littlemathquark
- 204
- 26
- Homework Statement
- ##a,b,c\in\mathbb{R}## if ##a^2+b^2+c^2=a^3+b^3+c^3=1## find ##a+b+c=?##
- Relevant Equations
- ##a,b,c\in\mathbb{R}## if ##a^2+b^2+c^2=a^3+b^3+c^3=1## find ##a+b+c=?##
Tt's easy to see permutations of ##(1,0,0)## are trivial solutions. I can use ##a^3+b^3+c^3=3abc+(a+b+c)(a^2+b^2+c^2-ab-ac-bc)## and I can find ##ab+ac+bc## in terms of ##a+b+c## but how can I achive the same thing for ##abc##?
Last edited: