MHB Equation for tangent of the curve

  • Thread starter Thread starter juliehellowell
  • Start date Start date
  • Tags Tags
    Curve Tangent
AI Thread Summary
To find the equation of the tangent to the curve defined by the parametric equations x = 2 cos t and y = 2 sin t at t = π/3, the tangent line can be expressed as y - 2 sin(π/3) = m[x - 2 cos(π/3)], where m is the slope of the tangent line. The curve represents a circle with a radius of 2 centered at the origin. The slope m can be calculated using the derivative formula dy/dx = (dy/dt) / (dx/dt) evaluated at t = π/3. This approach provides a method to determine the slope of the tangent line at the specified point on the circle. Understanding these calculations is essential for accurately finding the tangent line's equation.
juliehellowell
Messages
1
Reaction score
0
Can anyone help me to find the equation of the tangent to the curve x = 2 cos t, y= 2 sin t where t= pi/3??
 
Mathematics news on Phys.org
The set of parametric equations define a circle of radius, $r=2$, centered at the origin.

Tangent line to this circle has equation

$y - 2\sin\left(\dfrac{\pi}{3}\right) = m\bigg[x - 2\cos\left(\dfrac{\pi}{3}\right) \bigg]$

where $m$ is the slope perpendicular to the radius that connects the center to the point $(x,y)$ on the circle at $t=\dfrac{\pi}{3}$

you may also determine the slope, $m$, if you know how to calculate $\dfrac{dy}{dx} = \dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}$ at $t=\dfrac{\pi}{3}$
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top