To find the equation of the tangent to the curve defined by the parametric equations x = 2 cos t and y = 2 sin t at t = π/3, the tangent line can be expressed as y - 2 sin(π/3) = m[x - 2 cos(π/3)], where m is the slope of the tangent line. The curve represents a circle with a radius of 2 centered at the origin. The slope m can be calculated using the derivative formula dy/dx = (dy/dt) / (dx/dt) evaluated at t = π/3. This approach provides a method to determine the slope of the tangent line at the specified point on the circle. Understanding these calculations is essential for accurately finding the tangent line's equation.