Equation of a plane that is parallel to yz-plane

  • Thread starter Thread starter Rawhem
  • Start date Start date
  • Tags Tags
    Parallel Plane
Click For Summary
SUMMARY

The vector equation of a plane that contains the point P(2,-3,0) and is parallel to the yz-plane can be expressed as Pi: r = P(2,-3,0) + t(0,1,0) + s(0,0,1), where s and t are real numbers. An alternative representation, Pi: r = P(2,-3,0) + t(0,1,1) + s(0,1,2), is also valid but may lead to confusion regarding its parallelism to the yz-plane. To prove that the second representation is indeed parallel, one can demonstrate that the direction vectors (0,1,1) and (0,1,2) are linearly independent and that their cross product is a multiple of each other, confirming the plane's orientation.

PREREQUISITES
  • Understanding of vector equations in three-dimensional space
  • Knowledge of direction vectors and their role in defining planes
  • Familiarity with linear independence and cross products
  • Basic concepts of parallelism in geometry
NEXT STEPS
  • Study the properties of vector equations in three-dimensional geometry
  • Learn about linear independence and how to determine it using matrices
  • Explore the concept of cross products and their applications in vector analysis
  • Investigate the geometric interpretation of planes and their equations
USEFUL FOR

Students studying vector calculus, geometry enthusiasts, and educators teaching three-dimensional geometry concepts.

Rawhem
Messages
2
Reaction score
0

Homework Statement



Find the vector equation of a plane that contains the point P(2,-3,0) and is parallel to the yz-plane

Homework Equations



Vector equation is in the form... Pi: r = point + t(u) + s(v) s,t element of real numbers

The Attempt at a Solution



We know that the direction vectors (u and v) for a plane parallel to the yz-plane don't have x = 0 (no x component).

So the simplest answer to this would be...

Pi: r = P(2,-3,0) + t(0,1,0) + s(0,0,1) s,t element of R

However, another possible answer would be...

Pi: r = P(2,-3,0) + t(0,1,1) + s(0,1,2) s,t element of R

Although the second answer is a little more complex, it defines a plane that is parallel to the yz-plane.

However, my teacher insists that the plane I defined (second answer) isn't parallel to the yz-plane. Is there some way for me to prove that it is? (I am trying to explain my visualization to her but she is very insistent that my answer is wrong).
 
Last edited:
Physics news on Phys.org
Rawhem said:

Homework Statement



Find the vector equation of a plane that contains the point P(2,-3,0) and is parallel to the yz-plane

Homework Equations



Vector equation is in the form... Pi: r = point + t(u) + s(v) s,t element of real numbers

The Attempt at a Solution



We know that the direction vectors (u and v) for a plane parallel to the yz-plane don't have x = 0 (no x component).

So the simplest answer to this would be...

Pi: r = P(2,-3,0) + t(0,1,0) + s(0,0,1) s,t element of R

However, another possible answer would be...

Pi: r = P(2,-3,0) + t(0,1,1) + s(0,1,2) s,t element of R

Although the second answer is a little more complex, it defines a plane that is parallel to the yz-plane.

However, my teacher insists that the plane I defined (second answer) isn't parallel to the yz-plane. Is there some way for me to prove that it is? (I am trying to explain my visualization to her but she is very insistent that my answer is wrong).

A plane is parallel to the yz plane if it's tangent vectors are normal to the x unit vector (1,0,0). Show that's true for dPi/ds and dPi/dt. And also show (0,1,1) and (0,1,2) are linearly independent, just to make sure you've got a plane and not a line.
 
Note, by the way. that, in two dimensions, a line that is "parallel to the x-axis", that is, parallel to the line y= 0, is of the form y= c for some number c. Similarly a line that is "parallel to the y-axis", that is, parallel to the line x= 0, is of the for x= c for some number c.

In three dimensions, the "xy-plane" is the plane z= 0. Any plane parallel to it has equation z= c for some number c.
 
Last edited by a moderator:
Thanks for everyone's help!

The way I proved it to my teacher is by showing that the cross product of the direction vectors of each plane are a multiple of each other.

e.g. n1 = dir1 x dir2
n2 = dir2 x dir3

if n1 = kn2 then Pi: r1 = t(dir1) + s(dir2) is parallel to Pi: r2 = a(dir2) + b(dir3)
 
To make it parallel to the yz plane you just need x constant. To pass through the given point the constant must be 2. So the generic form is (2, s, t).
 
Rawhem said:
Thanks for everyone's help!

The way I proved it to my teacher is by showing that the cross product of the direction vectors of each plane are a multiple of each other.

e.g. n1 = dir1 x dir2
n2 = dir2 x dir3

if n1 = kn2 then Pi: r1 = t(dir1) + s(dir2) is parallel to Pi: r2 = a(dir2) + b(dir3)
Actually, the simplest way to define the cross product is to define \vec{i}\times \vec{j}= \vec{k}, \vec{j}\times\vec{k}= \vec{i}, \vec{k}\times\vec{i}= \vec{j} (i.e. cyclically) and extend to all vectors by defining it to be both "linear" and "anti-commutative".
 

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
Replies
5
Views
45K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K