I am struggling to find a way to count the number of irrational points defined recursively which satisfies specific conditions. This is the only hurdle I need to overcome, but the problem is proving itself extremely difficult.(adsbygoogle = window.adsbygoogle || []).push({});

Here is my construction of a recursion. My goal is to essentially prove that this recursion will guarantee a set of equidistributed points.

Let [itex]α[/itex] and [itex]β[/itex] be any positive irrational value. Define [itex]u_n = \{n α\} = n α \mod 1[/itex] and [itex]v_n = \{n β\} = n β \mod 1[/itex].

Consider the spherical coordinates, defined as follows:

[itex]θ_n = 2 π u_n[/itex]

[itex]ψ_n = \arccos{2 v_n - 1}[/itex]

This construction guarentees uniform distribution of points on the surface of the sphere. To show equidistribution, consider a spherical cap [itex]S[/itex] with height [itex]h[/itex] on the unit sphere (sphere with radius one). Given a particular [itex]n \in \mathbb{N}[/itex], my goal is to find the number of points that lie in [itex]S[/itex]. Inevitably, what I want to show is as follows:

[itex]\displaystyle \lim_{n \rightarrow \infty} \frac{\# p_n \in S}{n} = \frac{2 π h}{4π} = \frac{h}{2}[/itex].

This is equivalent to finding the number of [itex]n \in \mathbb{N}[/itex] (we'll call this number [itex]k[/itex]) satisfying,

[itex]\displaystyle u_n \in \left(0, \frac{\arccos{\frac{1-h}{2\sqrt{v_n(1-v_n)}}}}{2 \pi} \right) \cup \left(1- \frac{\arccos{\frac{1-h}{2\sqrt{v_n(1-v_n)}}}}{2 \pi}, 1 \right)[/itex]

[itex] \displaystyle v_n \in \left( \frac{1-\sqrt{1-(1-h)^2}}{2} , \frac{1+\sqrt{1-(1-h)^2}}{2}\right)[/itex]

For all [itex]0 \leq h \leq 1[/itex]. I used Mathematica to find [itex]k[/itex] and it seems that [itex]\frac{k}{n} \rightarrow \frac{h}{2}[/itex] where [itex]n[/itex] denotes the number of points on the surface of the entire sphere.

My question is, how do you use the definition of [itex]u_n[/itex] and [itex]v_n[/itex] to determine at least, the bounds for [itex]k[/itex]? Thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Equidistribution of points on a sphere

**Physics Forums | Science Articles, Homework Help, Discussion**