MHB Equilateral triangle within a circumscribed circle

Click For Summary
The discussion focuses on proving that the segments MT and TW are equal in an equilateral triangle inscribed in a circumscribed circle. Participants suggest using geometric properties and the inscribed angle theorem to establish the relationship between the segments. One contributor proposes using coordinate geometry to demonstrate that the lengths are equal, deriving the necessary equations from the triangle's angles and the circle's radius. The conclusion confirms that MT equals TW, validating the initial claim. The thread effectively combines geometric reasoning with algebraic methods to solve the problem.
Yankel
Messages
390
Reaction score
0
Dear all,

In the attached picture there is an equilateral triangle within a circumscribed circle.

MW is a radius of the circle, and I wish to prove that MT = TW, i.e., that the triangle cuts the radius into equal parts. I thought perhaps to draw lines AM and AW and to try and prove that I get two identical triangles, but failed to do so.

Can you kindly assist ?

Thank you !

View attachment 7682
 

Attachments

  • triangle circle.PNG
    triangle circle.PNG
    4.3 KB · Views: 155
Mathematics news on Phys.org
Here's how I would do it. Call the radius of the circle "r". The three angles, AMB, AMC, and BMC are each 360/3= 120 degrees. The angle AMT is half that, 60 degrees. The right triangle AMT has hypotenuse of length r, angle at M 60 degrees so the length of MT is r cos(60)= r/2.
 
Is it given that $\overline{MW}$ is perpendicular to $\overline{AB}$?
 
Greg, yes it is !
 
By the inscribed angle theorem $\angle{WAB}=\angle{WCB}=30^\circ$. It shouldn't be too difficult to finish up from there. :)
 
I would use coordinate geometry. Begin by orienting the circle such that its center is at the origin, and WLOG, give it a radius of 1 unit:

$$x^2+y^2=1$$

Now, the inscribed triangle has $\overline{AB}$ in quadrants I and IV as a vertical line. The line segment $\overline{MB}$ lines along:

$$y=\tan\left(60^{\circ}\right)x=\sqrt{3}x$$

Hence:

$$x^2+\left(\sqrt{3}x\right)^2=1$$

$$x^2=\frac{1}{4}$$

As $x$ must be positive, there results:

$$x=\frac{1}{2}$$

And so we conclude:

$$\overline{MT}=\overline{TW}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K