MHB Equilateral triangle within a circumscribed circle

Click For Summary
SUMMARY

The discussion focuses on proving that the segments MT and TW are equal in an equilateral triangle inscribed within a circumscribed circle. The radius of the circle is denoted as "r", and the angles AMB, AMC, and BMC are each 120 degrees, leading to angle AMT being 60 degrees. By applying the inscribed angle theorem and coordinate geometry, it is established that MT equals TW, with the calculations confirming that both segments measure r/2 when the radius is set to 1 unit.

PREREQUISITES
  • Understanding of inscribed angle theorem
  • Basic knowledge of coordinate geometry
  • Familiarity with trigonometric functions, specifically cosine and tangent
  • Concept of equilateral triangles and their properties
NEXT STEPS
  • Study the inscribed angle theorem in detail
  • Explore coordinate geometry applications in circle theorems
  • Learn about trigonometric identities and their proofs
  • Investigate properties of equilateral triangles in different geometric contexts
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in geometric proofs involving circles and triangles.

Yankel
Messages
390
Reaction score
0
Dear all,

In the attached picture there is an equilateral triangle within a circumscribed circle.

MW is a radius of the circle, and I wish to prove that MT = TW, i.e., that the triangle cuts the radius into equal parts. I thought perhaps to draw lines AM and AW and to try and prove that I get two identical triangles, but failed to do so.

Can you kindly assist ?

Thank you !

View attachment 7682
 

Attachments

  • triangle circle.PNG
    triangle circle.PNG
    4.3 KB · Views: 158
Mathematics news on Phys.org
Here's how I would do it. Call the radius of the circle "r". The three angles, AMB, AMC, and BMC are each 360/3= 120 degrees. The angle AMT is half that, 60 degrees. The right triangle AMT has hypotenuse of length r, angle at M 60 degrees so the length of MT is r cos(60)= r/2.
 
Is it given that $\overline{MW}$ is perpendicular to $\overline{AB}$?
 
Greg, yes it is !
 
By the inscribed angle theorem $\angle{WAB}=\angle{WCB}=30^\circ$. It shouldn't be too difficult to finish up from there. :)
 
I would use coordinate geometry. Begin by orienting the circle such that its center is at the origin, and WLOG, give it a radius of 1 unit:

$$x^2+y^2=1$$

Now, the inscribed triangle has $\overline{AB}$ in quadrants I and IV as a vertical line. The line segment $\overline{MB}$ lines along:

$$y=\tan\left(60^{\circ}\right)x=\sqrt{3}x$$

Hence:

$$x^2+\left(\sqrt{3}x\right)^2=1$$

$$x^2=\frac{1}{4}$$

As $x$ must be positive, there results:

$$x=\frac{1}{2}$$

And so we conclude:

$$\overline{MT}=\overline{TW}$$
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K