MHB Equilibrium solution limit to differential equation

Vishak95
Messages
19
Reaction score
0
Can someone please help me with this one? I have found the equilibrium solutions,but I'm not sure what to do next.

Consider dx/dt = x^3 - 4x

Given a solution x(t) which satisfies the condition x(0) = 1, determine the limit(t -> infinity) of x(t).

Thanks!
 
Physics news on Phys.org
Well what did you get for your solution?
 
Prove It said:
Well what did you get for your solution?

I got the equilibrium solutions x = -2 , 2 and 0. Out out these only x = 0 is stable. Not sure where to go from here though...
 
I meant, what did you get for your solution to the DE? Hint: It's separable and can be solved using Partial Fractions.
 
Prove It said:
I meant, what did you get for your solution to the DE? Hint: It's separable and can be solved using Partial Fractions.

It's also Bernoulli, as an alternative.
 
Ok, thanks guys, I got the answer :)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
2
Views
2K
Replies
1
Views
3K
Replies
5
Views
3K
Replies
3
Views
2K
Replies
52
Views
7K
Replies
1
Views
3K
Back
Top