Equivalence of Euler-Lagrange equations and Cardinal Equations for a rigid planar system

Click For Summary
SUMMARY

The discussion focuses on the equivalence of Euler-Lagrange equations and cardinal equations for a rigid planar system, specifically analyzing the total kinetic energy expressed via König's theorem. The kinetic energy is defined as $$T=\frac{1}{2}mv_p^2+\frac{1}{2}mI{\omega}^2$$, with $$v_p$$ representing the velocity of the center of mass and $$\omega$$ the angular velocity. The Euler-Lagrange equations derived from the Lagrangian are presented alongside the cardinal equations for conservation of momentum. The user seeks clarification on the methodology used to relate these equations, particularly regarding the retrieval of angular momentum from the Lagrangian equations.

PREREQUISITES
  • Understanding of Lagrangian mechanics and Euler-Lagrange equations
  • Familiarity with kinetic energy expressions in rigid body dynamics
  • Knowledge of angular momentum conservation principles
  • Proficiency in algebraic manipulation of equations
NEXT STEPS
  • Study the derivation of Euler-Lagrange equations in detail
  • Explore the relationship between Lagrangian mechanics and conservation laws
  • Investigate the application of König's theorem in rigid body dynamics
  • Learn about transformations in coordinates for complex systems
USEFUL FOR

Researchers, physicists, and engineers working in classical mechanics, particularly those focusing on rigid body dynamics and the application of Lagrangian methods in complex systems.

l4teLearner
Messages
19
Reaction score
4
Homework Statement
Check the equivalence of cardinal equations w.r.t Euler-Lagrange equations for a simple rigid planar system of a rod freely moving in space.

Consider the system depicted in the figure (see solution attempt) where a (thin) uniform rod of mass ##m## and length ##l## (section of the rod is negligible) is freely moving in two dimensional space. Given the lagrangian coordinates ##r##, ##\varphi## and ##\psi## shown in the picture, calculate the equations of motion for the body using Lagrange-Euler equations, then using the cardinal equations and finally compare the result. The two descriptions must be equivalent.
Relevant Equations
Koenig theorem for the Kinetic energy of a rigid body
$$T=\frac{1}{2}mv_p^2+\frac{1}{2}mI{\omega}^2$$

Euler Lagrange equations
$$L_r=\frac{d}{dt}\left(\frac{\partial}{\partial \dot r}(L) \right)-\frac{\partial}{\partial r}(L)=0$$
$$L_\varphi=\frac{d}{dt}\left(\frac{\partial}{\partial \dot \varphi}(L) \right)-\frac{\partial}{\partial \varphi}(L)=0$$
$$L_\psi=\frac{d}{dt}\left(\frac{\partial}{\partial \dot \psi}(L) \right)-\frac{\partial}{\partial \psi}(L)=0$$

Cardinal equations for a rigid body.
$$C_x=m\frac{dv_x}{dt}=0$$
$$C_y=m\frac{dv_y}{dt}=0$$
$$C_\omega=I\frac{d}{dt}(\omega)=0$$
1000035111.png

I express the total kinetic energy of the body, via König theorem, as

$$T=\frac{1}{2}mv_p^2+\frac{1}{2}mI{\omega}^2$$

where $$v_p=(v_x,v_y)=(\dot{r}\cos\varphi-r\dot{\varphi}\sin\varphi-\frac{l}{2}(\dot\varphi-\dot\psi)\sin(\varphi-\psi),\dot r \sin\varphi+r\dot\varphi \cos\varphi+\frac{l}{2}(\dot\varphi-\dot\psi)\cos(\varphi-\psi))$$ is the velocity of the center of mass, ##\omega=\dot\varphi-\dot\psi## is the angular velocity and ##I=\frac{1}{12}ml^2## is the moment of inertia of the rod with respect to its center of mass.

Doing the calculations (which I double checked with various platforms whose name starts with "M", so I am not sure the problem lies in the calculations) I get

$$T=\frac{1}{2}(\dot r^2+r^2\dot\varphi^2+\frac{l^2}{3}(\dot\varphi-\dot\psi)^2+l(\dot\varphi-\dot\psi)(r\dot\varphi \cos\psi+\dot r \sin\psi))$$

and the following Euler-Lagrange equations

$$L_r=\frac{d}{dt}\left(\frac{\partial}{\partial \dot r}(L) \right)-\frac{\partial}{\partial r}(L)=m (-2 \dot{\varphi}^2 r + 2 \ddot{r} +l \sin(\psi) (\ddot{\varphi} - \ddot{\psi} ) +l \cos(\psi)(\dot{\varphi}-\dot{\psi})^2 )/2=0$$

$$L_\varphi=\frac{d}{dt} \left(\frac{\partial}{\partial \dot \varphi}(L)\right)-\frac{\partial}{\partial \varphi}(L)=
\frac{m}{3} l^2(\ddot{\varphi} - \ddot{\psi}) +
m l \cos(\psi)\left(\dot{\varphi} \dot{r} + \ddot{\varphi} r - \frac{\ddot{\psi} r}{2}\right)
+ m l \sin(\psi) \left( \frac{\dot{\psi}^2 r}{2} - \dot{\varphi} \dot{\psi} r+ \frac{\ddot{r}}{2} \right) + m\ddot{\varphi} r^2+ 2m\dot{\varphi} \dot{r} r
=0$$

$$L_\psi=\frac{d}{dt}\left(\frac{\partial}{\partial \dot \psi}(L)\right)-\frac{\partial}{\partial \psi}(L)=
-\frac{m}{3} l^2 (\ddot{\varphi} - \ddot{\psi})- m l \cos(\psi) \left(\dot{r}\dot{\varphi} + \frac{\ddot{\varphi} r}{2}\right) -\frac{m}{2} l \sin(\psi)(\ddot{r}- r \dot{\varphi}^2 )
=0$$

If instead I calculate the cardinal equations, where I indicate quantities as:

- ##C_x=0## for the conservation of linear momentum along the x-axis
- ##C_y=0## for the conservation of linear momentum along the y-axix
- ##C_\omega=0##, for the conservation of angular momentum

I get the following equations:

$$C_x=m\frac{dv_x}{dt}=m(\ddot r \cos \varphi -2 \dot r \dot \varphi \sin \varphi -r \ddot \varphi \sin \varphi -r \dot \varphi^2 \cos \varphi-\frac{l}{2}(\ddot \varphi - \ddot \psi)\sin(\varphi-\psi)-\frac{l}{2}(\dot\varphi-\dot\psi)^2\cos(\varphi-\psi)=0$$

$$C_y=m\frac{dv_y}{dt}=m(\ddot r \sin \varphi + 2 \dot r \dot \varphi \cos \varphi + r \ddot \varphi \cos \varphi -r \dot \varphi^2 \sin \varphi+\frac{l}{2}(\ddot \varphi - \ddot \psi)\cos(\varphi-\psi)-\frac{l}{2}(\dot\varphi-\dot\psi)^2\sin(\varphi-\psi)=0$$

$$C_\omega=I\frac{d}{dt}(\omega)=\frac{1}{12}ml^2\dot\omega=\frac{1}{12}ml^2(\ddot\varphi-\ddot\psi)=0$$

In particular, I do get $$C_x \cos\varphi+C_y \sin\varphi=L_r$$ which seems promising to me, but I cannot find any way to retrieve ##C_\omega## from ##L_r##, ##L_\varphi##, ##L_\psi##.

I need to understand, am I just having an algebraic computation problem here, or is there a flaw in my reasoning? I am not asking to check my calculations, (you are welcome of course if you want) but to check the methodology. Maybe I am making some wrong assumptions on the ##T##, ##C## and ##\omega## quantities?

thanks
 
Physics news on Phys.org
I observe that x,y coordinates of center of inertia is
(r \cos\phi+\frac{l}{2} \cos \theta, r \sin\phi+\frac{l}{2} \sin \theta)
\omega = \dot{\theta}
where
\theta = \phi - \Psi
I hope it could be your help to check your result.
L(r,\dot{r},\phi,\dot{\phi},\theta,\dot{\theta})=\frac{m}{2}[ \ \dot{r}^2+r^2\dot{\phi}^2+\frac{l^2}{3}\dot{\theta}^2+l\dot{\theta}\cos(\phi-\theta)r\dot{\phi}+l\dot{\theta}\sin(\phi-\theta)\dot{r} \ ]
 
Last edited:
anuttarasammyak said:
I observe that x,y coordinates of center of inertia is
(r \cos\phi+\frac{l}{2} \cos \theta, r \sin\phi+\frac{l}{2} \sin \theta)
\omega = \dot{\theta}
where
\theta = \phi - \psi
I hope it could be your help to check your result.
hi anuttarasammyak, thanks for your help. yes, I evaluated the angular velocity as ##\dot \phi - \dot \psi##, it's one of the formulas I wrote just under the picture, in the first paragraph.
 
  • Like
Likes anuttarasammyak
I think the variables are complex and indirect. By changing the variables, center of inertia is
(r \cos\phi+\frac{l}{2} \cos \theta, r \sin\phi+\frac{l}{2} \sin \theta)=(R\cos \xi, R\sin\xi)
Lagrangian should be
L(R,\dot{R},\xi,\dot{\xi},\theta,\dot{\theta})=\frac{m}{2}[ \ \dot{R}^2+R^2\dot{\xi}^2+\frac{l^2}{12}\dot{\theta}^2\ ]
where
R=\sqrt{r^2+\frac{l^2}{4}+rl\cos\Psi}
\xi=\tan^{-1}\frac{r \sin\phi+\frac{l}{2} \sin (\phi-\Psi)}{r \cos\phi+\frac{l}{2} \cos(\phi-\Psi)}
\theta=\phi-\Psi
 
Last edited:
  • Like
Likes l4teLearner
anuttarasammyak said:
I think the variables are complex and indirect. By changing the variables, center of inertia is
(r \cos\phi+\frac{l}{2} \cos \theta, r \sin\phi+\frac{l}{2} \sin \theta)=(R\cos \xi, R\sin\xi)
Lagrangian should be
L(R,\dot{R},\xi,\dot{\xi},\theta,\dot{\theta})=\frac{m}{2}[ \ \dot{R}^2+R^2\dot{\xi}^2+\frac{l^2}{12}\dot{\theta}^2\ ]
where
R=\sqrt{r^2+\frac{l^2}{4}+rl\cos\Psi}
\xi=\tan^{-1}\frac{r \sin\phi+\frac{l}{2} \sin (\phi-\Psi)}{r \cos\phi+\frac{l}{2} \cos(\phi-\Psi)}
\theta=\phi-\Psi
thank you! I will attempt the calculations with the lagrangian that you provided and will let you know.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
824
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 11 ·
Replies
11
Views
887
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
15
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
829