Error of the WKB approximation

Click For Summary
SUMMARY

The forum discussion centers on calculating the error of the WKB approximation for the Schrödinger equation with the potential \( V(x) = x^2 \). Users propose methods for error analysis, including calculating the relative error on eigenenergy and the L2 norm of the difference in wave functions. They also suggest evaluating the difference in probability distributions as a measure of accuracy. The conversation highlights the complexity of quantifying errors in quantum mechanics and the need for precise mathematical definitions.

PREREQUISITES
  • Understanding of the Schrödinger equation and quantum mechanics
  • Familiarity with WKB approximation techniques
  • Knowledge of error analysis in numerical methods
  • Proficiency in calculus, particularly integration of wave functions
NEXT STEPS
  • Research methods for calculating the L2 norm of wave function differences
  • Study the implications of the WKB approximation in quantum mechanics
  • Explore recent articles on error analysis in quantum mechanical approximations
  • Learn about probability distributions in quantum states and their significance
USEFUL FOR

Quantum physicists, researchers in computational physics, and students studying quantum mechanics who are interested in error analysis and approximation methods.

phyQu
Messages
2
Reaction score
1
TL;DR
How to calculate the error made using the WKB approximation?
hello everyone

I tell you a little about my situation.
I already found the approximate wavefunctions for the Schrödinger equation with the potential ##V(x) = x^2##, likewise, energy, etc.
I have the approximate WKB solution and also the exact numeric solution.

What I need to do is to calculate the error of the approximate solution with respect to the exact solution,
but I need help to start, because I am lost with this topic.

Will it be possible to make an error analysis?
Will it be possible apply that is defined as ##e = |y_{exact} - y_{approx}|##?

Do you know if someone has already worked out the error for the WKB approximation?
Do you know of any recent article dealing with this?
I've searched the internet and I can't find anything that tells me specifically about the error of this method, please, can someone help me.

Thanks in advance
 
Physics news on Phys.org
I am not aware of any previous results concerning the error of the WKB approximation. Since the quality of the approximation depends on the variation of the potential with respect to the oscillation (wave number) of the wave function, I would be surprised if there was a general answer to this.

I would calculate the relative error on the eigenenergy as well as the L2 norm of the difference in wave functions,
$$
\int_{-\infty}^\infty \left| \psi_\textrm{exact}(x) - \psi_\textrm{approx}(x) \right|^2 \, dx
$$
However, this might be too much influenced by the complex phase, which is not physically relevant, so I would also calculate the difference in probability
$$
\int_{-\infty}^\infty \left| \psi_\textrm{exact}(x)\right|^2 - \left|\psi_\textrm{approx}(x) \right|^2 \, dx
$$
 
  • Like
Likes   Reactions: phyQu
Thank you very much, by the way, do you know a book that has this topic you are talking about? I would help me to reference my work.
 
The latter integral is not a good measure for the "distance of states", because the overall factor is just determined by the normalization condition, i.e., that integral should be 0 when normalizing both wave functions properly.
 
  • Like
Likes   Reactions: phyQu and DrClaude
DrClaude said:
However, this might be too much influenced by the complex phase, which is not physically relevant, so I would also calculate the difference in probability
$$
\int_{-\infty}^\infty \left| \psi_\textrm{exact}(x)\right|^2 - \left|\psi_\textrm{approx}(x) \right|^2 \, dx
$$
vanhees71 said:
The latter integral is not a good measure for the "distance of states", because the overall factor is just determined by the normalization condition, i.e., that integral should be 0 when normalizing both wave functions properly.
Well, you could integrate over the absolute value of the differences:
$$
\int_{-\infty}^\infty \left|\left| \psi_\textrm{exact}(x)\right|^2 - \left|\psi_\textrm{approx}(x) \right|^2\right| \, dx
$$
 
  • Like
Likes   Reactions: phyQu, DrClaude and vanhees71
vanhees71 said:
The latter integral is not a good measure for the "distance of states", because the overall factor is just determined by the normalization condition, i.e., that integral should be 0 when normalizing both wave functions properly.
Obviously :confused:. I should've thought a bit more about it. I was after a measure of the difference in local probability distribution. Maybe something like
$$
\max_x \left( \left| \psi_\textrm{exact}(x)\right|^2 - \left|\psi_\textrm{approx}(x) \right|^2 \right)
$$
 
  • Like
Likes   Reactions: phyQu and vanhees71

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K