What Is the Correct Method to Estimate Ionization Energy in He-like Carbon?

Click For Summary
SUMMARY

The correct method to estimate the ionization energy of He-like Carbon (C V) involves using the excitation energies of the 1s3s and 1s4s states, which are 2851180 cm-1 and 2988246 cm-1, respectively. The ionization energy is calculated using the formula Eio = Eexcitation + T, where T is derived from the Rydberg formula T = R/(n - δ)2. The quantum defect (δ) must be accurately determined; the correct value is approximately 0.03. The final calculated ionization energy for both states should yield values around 3162180 cm-1 for 3s and 3162300 cm-1 for 4s, confirming the importance of precise calculations in quantum defect adjustments.

PREREQUISITES
  • Understanding of quantum defects in atomic physics
  • Familiarity with the Rydberg formula for ionization energy
  • Knowledge of atomic spectroscopy and effective nuclear charge
  • Basic proficiency in solving equations involving energy levels
NEXT STEPS
  • Study the Rydberg formula and its applications in atomic physics
  • Learn about quantum defects and their significance in ionization energy calculations
  • Research atomic spectroscopy terminology, particularly Roman numeral notation
  • Explore effective nuclear charge calculations for multi-electron systems
USEFUL FOR

Students and researchers in atomic physics, particularly those focusing on ionization energy calculations, quantum mechanics, and atomic structure. This discussion is beneficial for anyone studying He-like ions and their properties.

John Greger
Messages
34
Reaction score
1

Homework Statement


In He-like Carbon, C V, the excitation energy of 1s3s ##^1S## is 2851180 ##cm^-1## and for 1s4s ##^1S## it is 2988246 ##cm^-1##. Estimate the ionization energy. Compare with the value in the NIST database!

Homework Equations


##E_{io}= T + E_{excitation}, ## ##T = ##\frac{R}{(n- \delta)^2} ## where delta is the quantum defect.

The Attempt at a Solution


[/B]
I started with setting up the equations $$E_{io} = E_{exc}(3s) + \frac{R}{(3- \delta)^2}$$
$$E_{io} = E_{exc}(4s) + \frac{R}{(4-\delta)^2}$$

I subtracted the two equations so I could get rid of ##E_{io}## and just solve for delta, assuming that delta is the same for 3s and 4s.

Numerically in my pocket calculator I got that delta = ca 2.199.

I now plugged that into the equations for T, hence got a value for ##E_{io}##.

But that was wrong..

Apparently the quantum defect and ionization energy was very wrong.

I also assumed that the ionization energy was same fro 3s and 4s.

The answer is " With ##\delta## = 0.03 3s gives 3162180 cm-1 and 4s 3162300 cm-1"

My question is, what did I do wrong and how should I alternatively set up equations to solve for delta? If the ionization energy is not the same for 3s and 4s I can think of any other way.
 
Physics news on Phys.org
I think the difference is due to the rounding of δ. I get δ = 0.03096, and Eio = 3162395 cm-1 for both 3s and 4s.
Your equations are incorrect. They refer to a neutral Rydberg atom, where the inner electrons screen Z-1 nuclear charges, so the effective nuclear charge felt by the outer electron is +1 (the quantum defect corrects for imperfect screening). What is the effective nuclear charge here?
 
  • Like
Likes   Reactions: BvU
mjc123 said:
I think the difference is due to the rounding of δ. I get δ = 0.03096, and Eio = 3162395 cm-1 for both 3s and 4s.
Your equations are incorrect. They refer to a neutral Rydberg atom, where the inner electrons screen Z-1 nuclear charges, so the effective nuclear charge felt by the outer electron is +1 (the quantum defect corrects for imperfect screening). What is the effective nuclear charge here?
Okey. So the idea is to get the same Eionzation energy for both 3s and 4s since it element-specific?

Sorry, I was a little sloppy in my expression for T, but $$Z-N_{inner}$$
= 6-5 = 1 so I didn't write it out. I use ##R=R_{\infty}## , don't you? But even with the "right" rydberg constant it should not differ that much. Do you use the same method as I used above because I can't get that delta.
 
Is Ninner 5? Do you know what "C V" is? Does "He-like" give you a clue? Or the electron configuration 1s3s?
 
mjc123 said:
Is Ninner 5? Do you know what "C V" is? Does "He-like" give you a clue? Or the electron configuration 1s3s?
Actually I no not know what C V mean, what does it mean? When I know that I can figure out number of "free" electrons. But was my method otherwise right?
 
Google is your friend: search for '2851180 carbon'
(you get the NIST answer thrown in ...)
 
  • Like
Likes   Reactions: John Greger
Roman numerals are used in atomic spectroscopy to indicate successive degrees of ionisation, beginning with the neutral atom. So "C I" is the C atom, "C II" is C+, "C III" is C2+ etc. "He-like" means it has the same number of electrons as helium, which is another clue.
Your method is right, except for the wrong effective nuclear charge.
 
  • Like
Likes   Reactions: John Greger
mjc123 said:
Roman numerals are used in atomic spectroscopy to indicate successive degrees of ionisation, beginning with the neutral atom. So "C I" is the C atom, "C II" is C+, "C III" is C2+ etc. "He-like" means it has the same number of electrons as helium, which is another clue.
Your method is right, except for the wrong effective nuclear charge.

Thank you. Then we have Z= 6 and the shelled electrons, ##N_{inner}## = 0. Since we only have two electrons, which fills the first s-shell. so now ##T=\frac{R*6^2}{(n-\delta)^2}##

But that still makes my results terrible wrong. It's impossible to obtain that delta. And even if I plug in the delta the ionization energy gets wrong. ##E_{exc}(3s) + T=\frac{R*6^2}{(3-0.03)^2} \neq 3162180 cm^{-1} ##as the solutions-manual suggests .

I tried with a similar exercise but here we had F VII (##F^{+6}##). Here the Z_N(inner) = 9-1 = 8. But same here, the results get awfully wrong. What am I doing wrong that mess up my results?
 
How much charge does this 3s electron 'see' ?
 
  • #10
No. In the Rydberg states (one electron in a high energy orbital) there is one inner electron. That's what the configuration 1s3s tells you. So Zeff = 5. Likewise F6+ has 3 electrons - 2 inner and one outer.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 2 ·
Replies
2
Views
4K