Estimating Remainders for Taylor Series of Sin(x)

Click For Summary
The third-order Taylor polynomial for sin(x) includes terms up to x^3, specifically x - x^3/3!. In the context of the remainder theorem, the term n refers to the number of terms in the series rather than the highest power. For sin(x), the x^4 term is zero, meaning the remainder for both the third and fourth order polynomials is the same. When estimating the remainder, it is often more effective to use the upper bound for the fourth-order remainder to gauge the accuracy of the approximation. Understanding these points clarifies the application of Taylor series and the remainder theorem for sin(x).
member 508213
I am just trying to clarify this point which I am unsure about:

If I am asked to write out (for example) a third order taylor polynomial for sin(x), does that mean I would write out 3 terms of the series OR to the x^3 term.

x-x^3/3!+x^5/5!

or just

x-x^3/3!Also, I have a question for the remainder theorem for taylor series (or Lagrange). If I am doing the remainder for a a polynomial for sinx written out as x-x^3/3!, the remainder theorem says use f^n+1(c)(x-a)^n+1/(n+1)!...but for sinx it skips the x^4 term so how would this work? I would assume you would just use the next term: (x^5/5!) but it does not say this anywhere I can find so I am unsure.

Thanks!
 
Physics news on Phys.org
The 3rd order taylor series for sin(x) would only be up to the x^3 term.

In the remainder formula, n refers to the number of terms, not necessarily the powers. In this case x is the first term, -x^3/3! is the 2nd term, and x^5/5! is the 3rd term.
 
Third order in the general case means up to the ##x^3## term. When you remember that a lot of terms are zero in your expression because they involve the sine of zero, maybe it becomes more clear.
 
DarthMatter said:
Third order in the general case means up to the ##x^3## term.
A tiny bit of "wordsmithing" to be clear: "up to and including"
 
  • Like
Likes DarthMatter
jbstemp said:
In the remainder formula, n refers to the number of terms, not necessarily the powers. In this case x is the first term, -x^3/3! is the 2nd term, and x^5/5! is the 3rd term.
The n has the same meaning as in "expansion to order n", but the formula is true for every n so it does not really matter as long as you use the same n for both expansion and error.
Austin said:
but for sinx it skips the x^4 term so how would this work?
It is 0*x4. There is nothing special about the zero.
 
Austin said:
Also, I have a question for the remainder theorem for taylor series (or Lagrange). If I am doing the remainder for a a polynomial for sinx written out as x-x^3/3!, the remainder theorem says use f^n+1(c)(x-a)^n+1/(n+1)!...but for sinx it skips the x^4 term so how would this work? I would assume you would just use the next term: (x^5/5!) but it does not say this anywhere I can find so I am unsure.
By definition, the remainders are given by
\begin{align*}
R_3(x) &= \sin x - T_3(x) \\
R_4(x) &= \sin x - T_4(x)
\end{align*} where ##T_n(x)## is the n-th order Taylor polynomial. For ##\sin x## about x=0, you have ##T_3(x)=T_4(x)## because the ##x^4## term vanishes; therefore, the remainders ##R_3(x)## and ##R_4(x)## have to be equal. Typically, however, you don't calculate the actual remainder. Instead, you find an upper bound. If you find an upper bound for ##R_4(x)##, it would give you an idea for how well ##T_4(x)## approximates ##\sin x##, and since ##T_3(x)=T_4(x)##, it also tells you how well ##T_3(x)## approximates ##\sin x##. So why find an upper bound for ##R_4(x)## instead of ##R_3(x)##? It's because you generally get a better, more stringent estimate for the upper bound by using the formula for higher-order remainder.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
19
Views
3K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K