Why do we need postulate 4 in Euclid's element (P14)?

  • Thread starter Thread starter chemistry1
  • Start date Start date
  • Tags Tags
    Element
Click For Summary
Postulate 4 is essential in Euclid's Proposition 14 because it establishes the equality of right angles constructed at different locations, which cannot be proven solely through common notions. While common notion 1 states that if two things are equal to a third, they are equal to each other, it lacks a corresponding element in this context. The angles CBA + ABE and CBA + ABD cannot be equated without invoking postulate 4, as there is no direct reference point for equality. Even if additional right angles are constructed, postulate 4 is still necessary to assert their equality. Thus, postulate 4 is crucial for validating the relationships between angles in this geometric framework.
chemistry1
Messages
108
Reaction score
0
http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI14.html

Hi, I was reading proposition 14 of Euclid's elements and there is only one thing which I find weird : why do we need postulate 4 to conclude that " the sum of the angles CBA and ABE equals the sum of the angles CBA and ABD."

Why can't we just use common notion 1 ? It seems useless to me to use the postulate...

Thank you !
 
Mathematics news on Phys.org
Euclid's definition of a right angle (definition 10) is a geometrical construction. You can't prove that right angles constructed at different positions are equal, so you need postulate 4 to say they are equal.

In modern notation, common notion 1 says "if x = a and y = a, then x = y". In the figure for proposition 14, if you call CBA+ABE x and CBA+ABD y, you don't have anything that corresponds to "a" in common notion 1.

Even if you constructed two more right angles somewhere in the figure and called then "a", you still need postulate 4 to say that x = a and y = a. But Euclid used postulate 4 directly to say that x = y.
 
AlephZero said:
Euclid's definition of a right angle (definition 10) is a geometrical construction. You can't prove that right angles constructed at different positions are equal, so you need postulate 4 to say they are equal.

In modern notation, common notion 1 says "if x = a and y = a, then x = y". In the figure for proposition 14, if you call CBA+ABE x and CBA+ABD y, you don't have anything that corresponds to "a" in common notion 1.

Even if you constructed two more right angles somewhere in the figure and called then "a", you still need postulate 4 to say that x = a and y = a. But Euclid used postulate 4 directly to say that x = y.

I don't think I understand your explanation... Didn't Euclid "prove" with proposition 13 that the sum of two angles were equal to two right angles ? And that we begin the demonstration assuming that the sum of the angle CBA and ABD were equal to two right angles ? What role does postulate 4 play here if I want to make things which equal the same thing equal one another ? What errors would I get if I just applied common notion 1 ?Thank you again for your help!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K