MHB Eugene's question via Facebook about a Differential Equation

Click For Summary
The differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = 3\,\sqrt{4 - y^2}$ is solved by separating variables and integrating, leading to the expression $y = 2\sin(3x + C)$. The initial condition $y(0) = 2$ helps determine the constant $C$, which is found to be $\arcsin(1) = \frac{\pi}{2}$. Thus, the final solution is $y(x) = 2\sin(3x + \frac{\pi}{2})$. The discussion highlights the importance of correctly applying initial conditions in solving differential equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 3\,\sqrt{4 - y^2} \end{align*}$ given that $\displaystyle \begin{align*} y\left( 0 \right) = 2 \end{align*}$

This equation is separable...

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x}&= 3\,\sqrt{4 - y^2} \\ \frac{1}{\sqrt{4 - y^2}}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 3 \\ \int{ \frac{1}{\sqrt{4 - y^2}}\,\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x} &= \int{ 3\,\mathrm{d}x} \\ \int{ \frac{1}{\sqrt{4 - y^2}}\,\mathrm{d}y} &= 3\,x + C_1 \end{align*}$

Now let $\displaystyle \begin{align*} y =2\sin{(t)} \implies \mathrm{d}y = 2\cos{(t)}\,\mathrm{d}t \end{align*}$

$\displaystyle \begin{align*} \int{\frac{1}{\sqrt{ 4 - \left[ 2\sin{(t)} \right] ^2} } \,2\cos{(t)} \, \mathrm{d}t } &= 3\,x + C_1 \\ \int{ \frac{ 2\cos{(t)} }{ \sqrt{4 - 4\sin^2{(t)} } }\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{\sqrt{4\left[ 1 - \sin^2{(t)} \right] } } \,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{\sqrt{4\cos^2{(t)} }}\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{2\cos{(t)}}\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{1\,\mathrm{d}t} &= 3\,x + C_1 \\ t + C_2 &= 3\,x + C_1 \\ t &= 3\,x + C, \textrm{ where } C = C_1 - C_2 \\ \arcsin{ \left( \frac{y}{2} \right) } &= 3\,x + C \\ \frac{y}{2} &= \sin{ \left( 3\,x + C \right) } \\ y &= 2\sin{ \left( 3\,x + C \right) } \end{align*}$

and since $\displaystyle \begin{align*} y \left( 0 \right) = 2 \end{align*}$

$\displaystyle \begin{align*} 2 &= \sin{ \left[ 3 \left( 0 \right) + C \right] } \\ 2 &= \sin{(C)} \\ C &= \arcsin{ \left( 2 \right) } \end{align*}$

Thus $\displaystyle \begin{align*} y = 2\sin{ \left[ 3\,x + \arcsin{ \left( 2 \right) } \right] } \end{align*}$
 
Mathematics news on Phys.org
Prove It said:
...and since $\displaystyle \begin{align*} y \left( 0 \right) = 2 \end{align*}$

$\displaystyle \begin{align*} 2 &= \sin{ \left[ 3 \left( 0 \right) + C \right] } \\ 2 &= \sin{(C)} \\ C &= \arcsin{ \left( 2 \right) } \end{align*}$

Thus $\displaystyle \begin{align*} y = 2\sin{ \left[ 3\,x + \arcsin{ \left( 2 \right) } \right] } \end{align*}$

Just a minor quibble...you want:

$$2=2\sin(3(0)+C)\implies C=\arcsin(1)$$

Hence:

$$y(x)=2\sin\left(3x+\arcsin(1)\right)$$
 
MarkFL said:
Just a minor quibble...you want:

$$2=2\sin(3(0)+C)\implies C=\arcsin(1)$$

Hence:

$$y(x)=2\sin\left(3x+\arcsin(1)\right)$$

This is why I shouldn't tutor at 1am hahaha. And of course, $\displaystyle \begin{align*} \arcsin{(1)} = \frac{\pi}{2} \end{align*}$ :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
6K