Eugene's question via Facebook about a Differential Equation

Click For Summary
SUMMARY

The differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = 3\,\sqrt{4 - y^2}$ is solved using the method of separation of variables. By substituting $y = 2\sin(t)$, the integral simplifies, leading to the general solution $y = 2\sin(3x + C)$. Given the initial condition $y(0) = 2$, it is determined that $C = \arcsin(1) = \frac{\pi}{2}$. Therefore, the final solution is $y(x) = 2\sin\left(3x + \frac{\pi}{2}\right)$.

PREREQUISITES
  • Understanding of separable differential equations
  • Knowledge of trigonometric identities and inverse functions
  • Familiarity with integration techniques
  • Basic concepts of initial value problems
NEXT STEPS
  • Study advanced techniques in solving differential equations
  • Learn about the applications of trigonometric functions in modeling
  • Explore the properties of inverse trigonometric functions
  • Investigate numerical methods for solving differential equations
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and differential equations, as well as anyone looking to deepen their understanding of trigonometric applications in mathematical modeling.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve $\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x} = 3\,\sqrt{4 - y^2} \end{align*}$ given that $\displaystyle \begin{align*} y\left( 0 \right) = 2 \end{align*}$

This equation is separable...

$\displaystyle \begin{align*} \frac{\mathrm{d}y}{\mathrm{d}x}&= 3\,\sqrt{4 - y^2} \\ \frac{1}{\sqrt{4 - y^2}}\,\frac{\mathrm{d}y}{\mathrm{d}x} &= 3 \\ \int{ \frac{1}{\sqrt{4 - y^2}}\,\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x} &= \int{ 3\,\mathrm{d}x} \\ \int{ \frac{1}{\sqrt{4 - y^2}}\,\mathrm{d}y} &= 3\,x + C_1 \end{align*}$

Now let $\displaystyle \begin{align*} y =2\sin{(t)} \implies \mathrm{d}y = 2\cos{(t)}\,\mathrm{d}t \end{align*}$

$\displaystyle \begin{align*} \int{\frac{1}{\sqrt{ 4 - \left[ 2\sin{(t)} \right] ^2} } \,2\cos{(t)} \, \mathrm{d}t } &= 3\,x + C_1 \\ \int{ \frac{ 2\cos{(t)} }{ \sqrt{4 - 4\sin^2{(t)} } }\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{\sqrt{4\left[ 1 - \sin^2{(t)} \right] } } \,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{\sqrt{4\cos^2{(t)} }}\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{ \frac{2\cos{(t)}}{2\cos{(t)}}\,\mathrm{d}t} &= 3\,x + C_1 \\ \int{1\,\mathrm{d}t} &= 3\,x + C_1 \\ t + C_2 &= 3\,x + C_1 \\ t &= 3\,x + C, \textrm{ where } C = C_1 - C_2 \\ \arcsin{ \left( \frac{y}{2} \right) } &= 3\,x + C \\ \frac{y}{2} &= \sin{ \left( 3\,x + C \right) } \\ y &= 2\sin{ \left( 3\,x + C \right) } \end{align*}$

and since $\displaystyle \begin{align*} y \left( 0 \right) = 2 \end{align*}$

$\displaystyle \begin{align*} 2 &= \sin{ \left[ 3 \left( 0 \right) + C \right] } \\ 2 &= \sin{(C)} \\ C &= \arcsin{ \left( 2 \right) } \end{align*}$

Thus $\displaystyle \begin{align*} y = 2\sin{ \left[ 3\,x + \arcsin{ \left( 2 \right) } \right] } \end{align*}$
 
Physics news on Phys.org
Prove It said:
...and since $\displaystyle \begin{align*} y \left( 0 \right) = 2 \end{align*}$

$\displaystyle \begin{align*} 2 &= \sin{ \left[ 3 \left( 0 \right) + C \right] } \\ 2 &= \sin{(C)} \\ C &= \arcsin{ \left( 2 \right) } \end{align*}$

Thus $\displaystyle \begin{align*} y = 2\sin{ \left[ 3\,x + \arcsin{ \left( 2 \right) } \right] } \end{align*}$

Just a minor quibble...you want:

$$2=2\sin(3(0)+C)\implies C=\arcsin(1)$$

Hence:

$$y(x)=2\sin\left(3x+\arcsin(1)\right)$$
 
MarkFL said:
Just a minor quibble...you want:

$$2=2\sin(3(0)+C)\implies C=\arcsin(1)$$

Hence:

$$y(x)=2\sin\left(3x+\arcsin(1)\right)$$

This is why I shouldn't tutor at 1am hahaha. And of course, $\displaystyle \begin{align*} \arcsin{(1)} = \frac{\pi}{2} \end{align*}$ :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K