Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Euler-Lagrange equation (EOM) solutions - hairy lagrangian

  1. Dec 15, 2014 #1
    I'm going through Zwiebach Chapter 6 on relativistic strings to try to solve a
    similar problem. I got all the way to my equation of motion
    \begin{eqnarray*}
    \delta S & = & [ p' \delta \theta]_{z 0}^{z 1} + \int_{z 0}^{z 1} d z \left(
    p - \frac{\partial ( p')}{\partial z} \right) \delta \theta\\
    & & \\
    \Longrightarrow p - \frac{\partial ( p')}{\partial z} & = & 0\\
    & & \\
    {where} : & & \\
    p & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta}\\
    p' & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta'}
    \end{eqnarray*}
    The Lagrangian I have is \begin{array}{lll}
    L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
    \theta'^2}
    \end{array}, and I know that this equation is the Euler Lagrange equation.


    \begin{eqnarray*}
    \frac{\partial L}{\partial \theta} - \frac{\partial}{\partial z} \left(
    \frac{\partial L}{\partial \theta'} \right) & = & 0\\
    & & \\
    {where} : & & \\
    \theta' ( z) & = & \frac{\partial \theta ( z)}{\partial z}\\
    L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
    \theta'^2}
    \end{eqnarray*}
    Just putting the expression for L into the equation gives me a mess:
    \begin{array}{lll}
    \frac{- 3 \sin \theta \cos^2 \theta}{z^5} \sqrt{1 + z^2 \theta'^2} -
    \frac{\sqrt{2} \theta'' ( 2 \theta'^2 z^2 + 3) \cos^3 \theta}{z^4 (
    \theta'^2 z^2 + 2)^{3 / 2}} & = & 0
    \end{array}
    I don't think I'm supposed to brute force this. I know what I want is to show that
    $$\theta = \arcsin ( z)$$ but I can't see how to get it. I'm thinking that there is something I'm missing about the equation of motion.
     
  2. jcsd
  3. Dec 15, 2014 #2
    oh and here is a link to the same question I posted on stackexchange
     
  4. Dec 16, 2014 #3

    ChrisVer

    User Avatar
    Gold Member

    What is the meaning of that Lagrangian?
    Or in other words, where in Zwiebach did you get it?
     
  5. Dec 16, 2014 #4
    Well I'm working in $$A d S_5 \times S^5$$
    \begin{eqnarray*}
    - d s^2 & = & g_{\alpha \beta}^{{induced}} d X^{\mu} d X_{\mu}\\
    & & \\
    & = & \{ G_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \}
    d X^{\mu} d X_{\mu}\\
    & & \\
    & = & \frac{1}{z^2} ( - d t^2 + d \vec{x}^2 + d z^2) + d \theta + \cos^2
    \theta d \Omega_3^2 + \sin^2 \theta d \psi^2
    \end{eqnarray*}
    \begin{eqnarray*}
    {spacetime} {indicies} : & \mu, \nu & \{ d = 0 \ldots 9 \}\\
    {world} {brane} {indicies} : & \alpha_1, \alpha_2, \alpha_3 &
    \{ p = 0 \ldots 7 \}\\
    {spatial} {indicies} {on} {brane} : & i, j & \{ p = 0
    \ldots 7 \}\\
    {spatial} {indicies} {normal} {to} {brane} : & a, b
    & \{ ( p - 1) \ldots d \}\\
    {generic} {index} {for} {transverse} {coordinates}
    : & & I \longrightarrow ( i, a)
    \end{eqnarray*}
    and we have:
    \begin{eqnarray*}
    \mu = 0 & t & \\
    1 & x^1 & \\
    2 & x^2 & \\
    3 & x^3 & \\
    4 & z & \\
    5 & \alpha 1 & \\
    6 & \alpha 2 & \\
    7 & \alpha 3 & \\
    8 & \theta & \\
    9 & \psi &
    \end{eqnarray*}
    working in the static gauge so instead of $\begin{array}{ll}
    \mu, \nu & \{ d = 0 \ldots 9 \}
    \end{array}$we have $$\mu = 0 \ldots 7$$. I do alot of ansatzing
    \begin{eqnarray*}
    '' {string} {coordinate}'' & : & X^8 ( x_1 \ldots x_7) \Rightarrow
    {ansatz} \Rightarrow X^8 \left( \not{t}, \not{\vec{x}}, z,
    \not{\alpha_1}, \not{\alpha_2}, \not{\alpha_3} \right) = \theta \left(
    \not{t}, \not{\vec{x}}, z, \not{\alpha_1}, \not{\alpha_2}, \not{\alpha_3}
    \right) = \theta ( z)\\
    & & X^9 ( x_1 \ldots x_7) \Rightarrow {ansatz} \Rightarrow X^9 \left(
    \not{t}, \not{\vec{x}}, z, \not{\alpha_1}, \not{\alpha_2}, \not{\alpha_3}
    \right) = \psi \left( \not{t}, \not{\vec{x}}, z, \not{\alpha_1},
    \not{\alpha_2}, \not{\alpha_3} \right) = \psi ( z)\\
    & & {ansatz} : \psi ( z) = 0
    \end{eqnarray*}
    \begin{eqnarray*}
    g_{\alpha \beta}^{{induced}} & = & g_{{Emil}} + G_{8 8}
    \partial_{\alpha} X^8 \partial_{\beta} X^8 + G_{99} \partial_{\alpha} X^9
    \partial_{\beta} X^9\\
    & & \\
    & = & \left(\begin{array}{cccccccc}
    G_{00} & 0 & & & & & & 0\\
    0 & G_{11} & 0 & & & & & \\
    & 0 & G_{22} & 0 & & & & \\
    & & 0 & G_{33} & 0 & & & \\
    & & & 0 & G_{44} + G_{88} \left( \frac{\partial \theta}{\partial z}
    \right)^2 & 0 & & \\
    & & & & 0 & G_{55} & 0 & \\
    & & & & & 0 & G_{66} & 0\\
    0 & & & & & & 0 & G_{77}
    \end{array}\right)\\
    & & \\
    & = & \left(\begin{array}{cccccccc}
    \frac{1}{x_4^2} & & & & & & \ldots & 0\\
    & \frac{1}{x_4^2} & & & & & & \vdots\\
    & & \frac{1}{x_4^2} & & & & & \\
    & & & \frac{1}{x_4^2} & & & & \\
    & & & & \frac{1}{x_4^2} + 1 \left( \frac{\partial \theta}{\partial z}
    \right)^2 & & & \\
    & & & & & \cos^2 x_8 & & \\
    \vdots & & & & & & \cos^2 x_8 \sin^2 x_5 & \\
    0 & \ldots & & & & & & \cos^2 x_8 \sin^2 x_5 \sin^2 x_6
    \end{array}\right)
    \end{eqnarray*}
    where I know that
    \begin{eqnarray*}
    L & = & \det \sqrt{g_{\alpha \beta}^{{induced}}}\\
    & & \\
    L & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2 \left( \frac{\partial
    \theta}{\partial z} \right)^2} = L ( z, \theta, \theta')
    \end{eqnarray*}


    The action ends up working as follows:
    \begin{eqnarray*}
    S & = & \int d x_4 L ( X^8 ( x_1 \ldots x_7), X^9 ( x_1 \ldots x_7))\\
    & & \\
    S & = & \int d z L ( \theta ( t \ldots \alpha_3), \psi ( t \ldots
    \alpha_3))\\
    & & \\
    & \Rightarrow & {ansatz} !\\
    & & \\
    S & = & \int d z L ( \theta ( z), 0) = \int d z \frac{\cos^3 \theta}{z^5}
    \sqrt{1 + z^2 \left( \frac{\partial \theta}{\partial z} \right)^2}
    \end{eqnarray*}
    where I want to apply the principle of least action.
     
  6. Dec 17, 2014 #5

    ChrisVer

    User Avatar
    Gold Member

    Sorry I don't think I can help..
    However to check whether you did it right or wrong, I'd say to try and insert your solution to the Euler Lagrange equation you derived and check whether it's correct or not. In fact I don't see where the [itex] \sin ^2 x_5 \sin x_6 [/itex] coming from your [itex]det \sqrt{g_{ab}}[/itex] went...
    you could as well try computational method?
     
  7. Dec 17, 2014 #6
    This could be done with maple or mathematica.
     
  8. Dec 17, 2014 #7
    Take another look at the second term of the "mess" ;-) .
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Euler-Lagrange equation (EOM) solutions - hairy lagrangian
Loading...