- #1
- 8
- 0
I'm going through Zwiebach Chapter 6 on relativistic strings to try to solve a
similar problem. I got all the way to my equation of motion
\begin{eqnarray*}
\delta S & = & [ p' \delta \theta]_{z 0}^{z 1} + \int_{z 0}^{z 1} d z \left(
p - \frac{\partial ( p')}{\partial z} \right) \delta \theta\\
& & \\
\Longrightarrow p - \frac{\partial ( p')}{\partial z} & = & 0\\
& & \\
{where} : & & \\
p & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta}\\
p' & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta'}
\end{eqnarray*}
The Lagrangian I have is \begin{array}{lll}
L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
\theta'^2}
\end{array}, and I know that this equation is the Euler Lagrange equation.
\begin{eqnarray*}
\frac{\partial L}{\partial \theta} - \frac{\partial}{\partial z} \left(
\frac{\partial L}{\partial \theta'} \right) & = & 0\\
& & \\
{where} : & & \\
\theta' ( z) & = & \frac{\partial \theta ( z)}{\partial z}\\
L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
\theta'^2}
\end{eqnarray*}
Just putting the expression for L into the equation gives me a mess:
\begin{array}{lll}
\frac{- 3 \sin \theta \cos^2 \theta}{z^5} \sqrt{1 + z^2 \theta'^2} -
\frac{\sqrt{2} \theta'' ( 2 \theta'^2 z^2 + 3) \cos^3 \theta}{z^4 (
\theta'^2 z^2 + 2)^{3 / 2}} & = & 0
\end{array}
I don't think I'm supposed to brute force this. I know what I want is to show that
$$\theta = \arcsin ( z)$$ but I can't see how to get it. I'm thinking that there is something I'm missing about the equation of motion.
similar problem. I got all the way to my equation of motion
\begin{eqnarray*}
\delta S & = & [ p' \delta \theta]_{z 0}^{z 1} + \int_{z 0}^{z 1} d z \left(
p - \frac{\partial ( p')}{\partial z} \right) \delta \theta\\
& & \\
\Longrightarrow p - \frac{\partial ( p')}{\partial z} & = & 0\\
& & \\
{where} : & & \\
p & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta}\\
p' & = & \frac{\partial L ( z, \theta, \theta')}{\partial \theta'}
\end{eqnarray*}
The Lagrangian I have is \begin{array}{lll}
L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
\theta'^2}
\end{array}, and I know that this equation is the Euler Lagrange equation.
\begin{eqnarray*}
\frac{\partial L}{\partial \theta} - \frac{\partial}{\partial z} \left(
\frac{\partial L}{\partial \theta'} \right) & = & 0\\
& & \\
{where} : & & \\
\theta' ( z) & = & \frac{\partial \theta ( z)}{\partial z}\\
L ( z, \theta, \theta') & = & \frac{\cos^3 \theta}{z^5} \sqrt{1 + z^2
\theta'^2}
\end{eqnarray*}
Just putting the expression for L into the equation gives me a mess:
\begin{array}{lll}
\frac{- 3 \sin \theta \cos^2 \theta}{z^5} \sqrt{1 + z^2 \theta'^2} -
\frac{\sqrt{2} \theta'' ( 2 \theta'^2 z^2 + 3) \cos^3 \theta}{z^4 (
\theta'^2 z^2 + 2)^{3 / 2}} & = & 0
\end{array}
I don't think I'm supposed to brute force this. I know what I want is to show that
$$\theta = \arcsin ( z)$$ but I can't see how to get it. I'm thinking that there is something I'm missing about the equation of motion.