Euler-Mascheroni constant [problem]

  • Thread starter Thread starter Another
  • Start date Start date
  • Tags Tags
    Constant
Click For Summary
The discussion focuses on proving that the integral of e^(-x)ln(x) from 0 to infinity equals -γ, where γ is the Euler-Mascheroni constant. Participants share their approaches, including integration by parts and series expansion of e^(-x). There is a debate over the limits involved in the calculation, particularly as x approaches 0 and infinity, with some clarifying the correct handling of logarithmic limits. The conversation also touches on the definition of the Euler-Mascheroni constant and suggests alternative methods for solving the integral. Overall, the thread highlights the complexity of the integral and the importance of careful limit evaluation.
Another
Messages
104
Reaction score
5
Moved from a technical forum, so homework template missing
Show that ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma ## when ##\gamma## is Euler–Mascheroni constant

My solution is ...

## u = ln(x) ## and ## du = \frac{dx}{x}##
## dv = e^{-x} dx## and ## v = -e^{-x}##

so... ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx##

when ##e^{-x}=\sum_{n=0}^{\infty}\frac{(-x)^n}{n!}=\sum_{n=0}^{\infty}\frac{(-1)^n(x)^n}{n!}##
##\frac{e^{-x}}{x}=\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+...##so...##-ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = -ln(x)e^{-x}+\int_{0}^{\infty}[\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+... ]\,dx##
##= -ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}##

##\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+\lim_{{x}\to{0}}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}##

##\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+0##

and
##\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}## ##=\lim_{{x}\to{\infty}}-ln(x)e^{-x}+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}##

##\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}##

finally...
##\int_{0}^{\infty} e^{-x}ln(x)\,dx =\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}-\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}##

How to solution ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma ##??
 
Last edited:
  • Like
Likes Delta2
Physics news on Phys.org
What is the definition equality in your book for the Euler-Mascheroni constant?

The limit ##\lim_{x->0}{-lnxe^{-x}+lnx}## is zero, I believe you can easily prove that.
 
Delta² said:
What is the definition equality in your book for the Euler-Mascheroni constant?

The limit ##\lim_{x->0}{-lnxe^{-x}+lnx}## is zero, I believe you can easily prove that.
##\lim_{x->0}{-lnxe^{-x}+lnx} = -ln(0)e^{-0}+ln(0) = -1 + 1 = 0 ## thankyou

In my book the Euler-Mascheroni constant ## \gamma = \lim_{n->∞}\left\{-ln(n)+\sum_{i=1}^{n}\frac{1}{i}\right\}##
 
Another said:
##\lim_{x->0}{-lnxe^{-x}+lnx} = -ln(0)e^{-0}+ln(0) = -1 + 1 = 0 ## thankyou

Er no that limit is not so straight forward afterall sorry. Your mistake here is that ##ln(0)=-\infty## and not 1. Instead work this limit as

##lnx(1-e^{-x})=-xlnx\frac{1-e^{-x}}{-x}## when we know that ##\lim_{x->0}{\frac{1-e^{-x}}{-x}}=-1## so all you left is to work
##\lim_{x->0}{xlnx}## with De L Hopital rule.

So after that all that essentially is left with is the limit ##\lim_{x->\infty}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{nn!}##.
 
  • Like
Likes Another
Delta² said:
Er no that limit is not so straight forward afterall sorry. Your mistake here is that ##ln(0)=-\infty## and not 1. Instead work this limit as

##lnx(1-e^{-x})=-xlnx\frac{1-e^{-x}}{-x}## when we know that ##\lim_{x->0}{\frac{1-e^{-x}}{-x}}=-1## so all you left is to work
##\lim_{x->0}{xlnx}## with De L Hopital rule.
Oh thank you very much. I am stupid. I confused between ln(0) and ln(1) hahahahahahaha thank you very much
 
Another said:
Show that ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma ## when ##\gamma## is Euler–Mascheroni constant

My solution is ...

## u = ln(x) ## and ## du = \frac{dx}{x}##
## dv = e^{-x} dx## and ## v = -e^{-x}##

so... ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx##

when ##e^{-x}=\sum_{n=0}^{\infty}\frac{(-x)^n}{n!}=\sum_{n=0}^{\infty}\frac{(-1)^n(x)^n}{n!}##
##\frac{e^{-x}}{x}=\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+...##so...##-ln(x)e^{-x}+\int_{0}^{\infty}\frac{e^{-x}}{x} \,dx = -ln(x)e^{-x}+\int_{0}^{\infty}[\frac{1}{x}-1+\frac{x}{2!}-\frac{x^2}{3!}+... ]\,dx##
##= -ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}##

##\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+\lim_{{x}\to{0}}\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}##

##\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}+0##

and
##\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}## ##=\lim_{{x}\to{\infty}}-ln(x)e^{-x}+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}##

##\lim_{{x}\to{\infty}}\left\{-ln(x)e^{-x}+ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!}\right\}=0+\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}##

finally...
##\int_{0}^{\infty} e^{-x}ln(x)\,dx =\lim_{{x}\to{\infty}}\left\{ln(x)+\sum_{n=1}^{\infty}\frac{(-1)^nx^n}{n\cdot n!} \right\}-\lim_{{x}\to{0}}\left\{-ln(x)e^{-x}+ln(x)\right\}##

How to solution ##\int_{0}^{\infty} e^{-x}ln(x)\,dx = -\gamma ##??

I could not follow your rather cavalier reasoning. In this case the definition of the integral is
$$\lim_{a \to 0, b \to \infty} \int_a^b e^{-x} \ln(x) \, dx$$
It would be better to express the finite integral in series terms, then examine the limits as ##a \to 0## and ##b \to \infty##.

BTW: in LaTeX you should type "\ln" instead of "ln", so you get ##\ln x## instead of ##ln x##.
 
  • Like
Likes Another

Similar threads

Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K