MHB Evaluate $b_1^2+5b_2^2$ Given $a_1^2+5a_2^2=10$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around evaluating the expression $b_1^2 + 5b_2^2$ given the constraints $a_1^2 + 5a_2^2 = 10$, $a_2b_1 - a_1b_2 = 5$, and $a_1b_1 + 5a_2b_2 = \sqrt{105}$. Participants share their solutions and insights, highlighting the usefulness of specific identities in solving the problem. The conversation emphasizes collaboration and appreciation for each other's contributions. Ultimately, the focus remains on deriving the value of $b_1^2 + 5b_2^2$ through the provided equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.
 
Mathematics news on Phys.org
anemone said:
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.

Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.
 
mente oscura said:
Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.

Thanks, mente oscura for your solution and thanks for participating too!

I will share the other solution here:

Let's define

$a=a_1+i\sqrt{5}a_2$

$b=b_1-i\sqrt{5}b_2$

The first given equation where $a_1^2+5a_2^2=10$ suggests $|a|=\sqrt{10}$

Multiply $a$ by $b$ we have

$\begin{align*}ab&=(a_1+i\sqrt{5}a_2)(b_1-i\sqrt{5}b_2)\\&=a_1b_1+5a_2b_2+i\sqrt{5}(a_2b_1-a_1b_2)\\&=\sqrt{105}+i\sqrt{5}5\end{align*}$

since we are told $a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$

This yields $|ab|=\sqrt{105+125}=\sqrt{230}=\sqrt{10}\sqrt{23}$ and this implies $|b|=\sqrt{23}$ since $|a|=\sqrt{10}$.

$\therefore b_1^2+5b_2^2=|b|^2=23$
 
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
putting $p= a_1$, $q = \sqrt{5} a_2$ ,$l= b_1$, $m = \sqrt{5} b_2$
we get $(a_1^2 + 5a_2^2)(b_1^2+5b_2)^2 = (a_1b_1 + 5a_2b_2)^2+5(a_1b_2 - a_2b_1)^2$
putting values from given conditions we get
$10(b_1^2+5b_2^2) = 105 + 5 * 5^2$
or $10(b_1^2 + 5b_2^2) = 230$
or $b_1^2 + 5b_2^2 = 23$
 
kaliprasad said:
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
...

Thanks, Kali for your solution and I especially want to give credit to the above "identity" because I can tell that is a lifesaver if we use it sparingly and wisely, hehehe...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top