MHB Evaluate $b_1^2+5b_2^2$ Given $a_1^2+5a_2^2=10$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around evaluating the expression $b_1^2 + 5b_2^2$ given the constraints $a_1^2 + 5a_2^2 = 10$, $a_2b_1 - a_1b_2 = 5$, and $a_1b_1 + 5a_2b_2 = \sqrt{105}$. Participants share their solutions and insights, highlighting the usefulness of specific identities in solving the problem. The conversation emphasizes collaboration and appreciation for each other's contributions. Ultimately, the focus remains on deriving the value of $b_1^2 + 5b_2^2$ through the provided equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.
 
Mathematics news on Phys.org
anemone said:
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.

Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.
 
mente oscura said:
Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.

Thanks, mente oscura for your solution and thanks for participating too!

I will share the other solution here:

Let's define

$a=a_1+i\sqrt{5}a_2$

$b=b_1-i\sqrt{5}b_2$

The first given equation where $a_1^2+5a_2^2=10$ suggests $|a|=\sqrt{10}$

Multiply $a$ by $b$ we have

$\begin{align*}ab&=(a_1+i\sqrt{5}a_2)(b_1-i\sqrt{5}b_2)\\&=a_1b_1+5a_2b_2+i\sqrt{5}(a_2b_1-a_1b_2)\\&=\sqrt{105}+i\sqrt{5}5\end{align*}$

since we are told $a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$

This yields $|ab|=\sqrt{105+125}=\sqrt{230}=\sqrt{10}\sqrt{23}$ and this implies $|b|=\sqrt{23}$ since $|a|=\sqrt{10}$.

$\therefore b_1^2+5b_2^2=|b|^2=23$
 
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
putting $p= a_1$, $q = \sqrt{5} a_2$ ,$l= b_1$, $m = \sqrt{5} b_2$
we get $(a_1^2 + 5a_2^2)(b_1^2+5b_2)^2 = (a_1b_1 + 5a_2b_2)^2+5(a_1b_2 - a_2b_1)^2$
putting values from given conditions we get
$10(b_1^2+5b_2^2) = 105 + 5 * 5^2$
or $10(b_1^2 + 5b_2^2) = 230$
or $b_1^2 + 5b_2^2 = 23$
 
kaliprasad said:
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
...

Thanks, Kali for your solution and I especially want to give credit to the above "identity" because I can tell that is a lifesaver if we use it sparingly and wisely, hehehe...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
21K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K