Evaluate $b_1^2+5b_2^2$ Given $a_1^2+5a_2^2=10$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $b_1^2 + 5b_2^2$ given the constraints $a_1^2 + 5a_2^2 = 10$, $a_2b_1 - a_1b_2 = 5$, and $a_1b_1 + 5a_2b_2 = \sqrt{105}$. Participants provided multiple solutions, highlighting the importance of specific identities in simplifying the evaluation process. The solutions emphasize the relationships between the variables and the application of algebraic techniques to derive the final result.

PREREQUISITES
  • Understanding of quadratic forms and their properties
  • Familiarity with algebraic identities and manipulation
  • Knowledge of real numbers and their operations
  • Basic skills in solving systems of equations
NEXT STEPS
  • Explore the application of quadratic forms in optimization problems
  • Study advanced algebraic identities relevant to multi-variable equations
  • Learn techniques for solving systems of equations involving multiple variables
  • Investigate the geometric interpretation of quadratic forms in real analysis
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced problem-solving techniques involving quadratic forms and multi-variable equations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.
 
Mathematics news on Phys.org
anemone said:
Given $a_1^2+5a_2^2=10,\,a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$ for $a_1,\,a_2,\,b_1,\,b_2\in R$, evaluate $b_1^2+5b_2^2$.

Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.
 
mente oscura said:
Hello.

x=a_1, \ y=a_2, \ z=b_1, \ k=b_2, \ z^2+5k^2=S

x^2+5y^2=10. (p1)

yz-xk=5. (p2)

xz+5yk= \sqrt{105}. (p3)

(x^2+5y^2)(z^2+5k^2)=10S. (pS)

y^2z^2+x^2k^2-2xyzk=25. Square (p2). (p4)

5y^2z^2+5x^2k^2-10xyzk=125. (p4)*5. (p5)

x^2z^2+25y^2k^2+10xyzk=105. Square (p3). (p6)

5y^2z^2+5x^2k^2+x^2z^2+25y^2k^2=230. (p5)+(p6). (p7)

(x^2+5y^2)(z^2+5k^2)=x^2z^2+5x^2k^2+5y^2z^2+25y^2k^2=10S=230

S=z^2+5k^2=23

b_1^2+5b_2^2=23

Regards.

Thanks, mente oscura for your solution and thanks for participating too!

I will share the other solution here:

Let's define

$a=a_1+i\sqrt{5}a_2$

$b=b_1-i\sqrt{5}b_2$

The first given equation where $a_1^2+5a_2^2=10$ suggests $|a|=\sqrt{10}$

Multiply $a$ by $b$ we have

$\begin{align*}ab&=(a_1+i\sqrt{5}a_2)(b_1-i\sqrt{5}b_2)\\&=a_1b_1+5a_2b_2+i\sqrt{5}(a_2b_1-a_1b_2)\\&=\sqrt{105}+i\sqrt{5}5\end{align*}$

since we are told $a_2b_1-a_1b_2=5$ and $a_1b_1+5a_2b_2=\sqrt{105}$

This yields $|ab|=\sqrt{105+125}=\sqrt{230}=\sqrt{10}\sqrt{23}$ and this implies $|b|=\sqrt{23}$ since $|a|=\sqrt{10}$.

$\therefore b_1^2+5b_2^2=|b|^2=23$
 
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
putting $p= a_1$, $q = \sqrt{5} a_2$ ,$l= b_1$, $m = \sqrt{5} b_2$
we get $(a_1^2 + 5a_2^2)(b_1^2+5b_2)^2 = (a_1b_1 + 5a_2b_2)^2+5(a_1b_2 - a_2b_1)^2$
putting values from given conditions we get
$10(b_1^2+5b_2^2) = 105 + 5 * 5^2$
or $10(b_1^2 + 5b_2^2) = 230$
or $b_1^2 + 5b_2^2 = 23$
 
kaliprasad said:
my Solution
we have
$(p^2+q^2)(l^2 + m^2) = (pl-qm)^2+ (pm + ql)^2$
...

Thanks, Kali for your solution and I especially want to give credit to the above "identity" because I can tell that is a lifesaver if we use it sparingly and wisely, hehehe...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
22K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K