Evaluate Integral: \(\cos x \cdot \cdot \cdot \cos 2^{2018}x\)

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral \[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdots \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\] Participants explore various approaches to solve this integral, including the use of trigonometric identities and series expansions.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants express uncertainty about the presence of a specific term (-1) in the integral.
  • One participant provides a detailed derivation using the identity $\cos\theta \cos\phi = \frac12\bigl(\cos(\theta+\phi) + \cos(\theta-\phi)\bigr)$ to simplify the product of cosines.
  • Another participant confirms the correctness of the previous solution while seeking clarification on a specific step.
  • Some participants express differing results when attempting to reorder the sum in the derivation.
  • A participant acknowledges an alternative solution but considers another's approach to be superior.

Areas of Agreement / Disagreement

There is no consensus on the evaluation of the integral, as multiple approaches and interpretations are presented, leading to differing results among participants.

Contextual Notes

Participants reference specific mathematical identities and properties of integrals, but there are unresolved details regarding assumptions and steps in the derivations.

Who May Find This Useful

Readers interested in advanced calculus, particularly in evaluating integrals involving products of trigonometric functions, may find this discussion beneficial.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]
 
Physics news on Phys.org
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]

Is that -1 supposed to be there?
 
Prove It said:
Is that -1 supposed to be there?

Yes!
 
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]

We can prove with induction and the product-to-sum-identity that:
$$\prod_{k=0}^n \cos 2^k x = \frac 1{2^n}\sum_{k=0}^{2^n-1}\cos (2k+1)x
$$
Thus:
$$\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\
=\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi} 1 + \sum_{k=1}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1}\frac{\sin(2^{k+1}-2)x}{2^{k+1}-2} \right]_{0}^{2\pi} \\
=\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\\
$$
 
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]
[sp]Using the identity $\cos\theta \cos\phi = \frac12\bigl(\cos(\theta+\phi) + \cos(\theta-\phi)\bigr)$, $$\begin{aligned} \cos x\cos 2x &= 2^{-1}(\cos x + \cos 3x) \\ \cos x\cos 2x\cos 4x &= 2^{-1}(\cos x + \cos 3x)\cos 4x = 2^{-2}(\cos x + \cos 3x + \cos 5x + \cos 7x) \\ \cos x\cos 2x\cos 4x \cos8x &= 2^{-3}(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos 15x) \\ &\vdots \\ \cos x\cos 2x\cos 4x \cdots \cos(2^nx) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr). \end{aligned}$$ Then $$\begin{aligned}\cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr)\cos((2^{n+1}-1)x) \\ &= 2^{-n-1}\bigl(1 + \cos 2x + \cos 4x + \cos 6x + \cos 8x + \ldots + \cos ((2^{n+2}-2)x)\bigr). \end{aligned}$$ But $$\int_0^{2\pi}1\,dx = 2\pi,$$ and $$\int_0^{2\pi}\cos2k\pi\,dx = 0$$ for all nonzero integers $k$. Therefore $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x)\,dx = \frac{2\pi}{2^{n+1}} = \frac\pi{2^n}.$$ Finally, put $n=2017$ to get $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^{2017}x) \cos((2^{2018}-1)x)\,dx = \frac\pi{2^{2017}}.$$

[/sp]

Edit: Beaten to it by ILS!
 
I like Serena said:
We can prove with induction and the product-to-sum-identity that:
$$\prod_{k=0}^n \cos 2^k x = \frac 1{2^n}\sum_{k=0}^{2^n-1}\cos (2k+1)x
$$
Thus:
$$\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\
=\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi} 1 + \sum_{k=1}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1}\frac{\sin(2^{k+1}-2)x}{2^{k+1}-2} \right]_{0}^{2\pi} \\
=\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\\
$$
Great job, I like Serena! Thankyou for your participation and a correct answer. Would you please help me understand the following step? I´m sure, you are right. It´s just my inert understanding of a detail in your nice solution:

It is the following equality:

\[\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \]

Thankyou for being patient with me!(Blush)
 
Opalg said:
[sp]Using the identity $\cos\theta \cos\phi = \frac12\bigl(\cos(\theta+\phi) + \cos(\theta-\phi)\bigr)$, $$\begin{aligned} \cos x\cos 2x &= 2^{-1}(\cos x + \cos 3x) \\ \cos x\cos 2x\cos 4x &= 2^{-1}(\cos x + \cos 3x)\cos 4x = 2^{-2}(\cos x + \cos 3x + \cos 5x + \cos 7x) \\ \cos x\cos 2x\cos 4x \cos8x &= 2^{-3}(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos 15x) \\ &\vdots \\ \cos x\cos 2x\cos 4x \cdots \cos(2^nx) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr). \end{aligned}$$ Then $$\begin{aligned}\cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr)\cos((2^{n+1}-1)x) \\ &= 2^{-n-1}\bigl(1 + \cos 2x + \cos 4x + \cos 6x + \cos 8x + \ldots + \cos ((2^{n+2}-2)x)\bigr). \end{aligned}$$ But $$\int_0^{2\pi}1\,dx = 2\pi,$$ and $$\int_0^{2\pi}\cos2k\pi\,dx = 0$$ for all nonzero integers $k$. Therefore $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x)\,dx = \frac{2\pi}{2^{n+1}} = \frac\pi{2^n}.$$ Finally, put $n=2017$ to get $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^{2017}x) \cos((2^{2018}-1)x)\,dx = \frac\pi{2^{2017}}.$$

[/sp]

Edit: Beaten to it by ILS!

Thankyou, Opalg for a very clear and lucid solution!

Just a small typo:

I´d expect the integrand $\cos 2k\pi$ to be $\cos 2kx$.
 
lfdahl said:
Great job, I like Serena! Thankyou for your participation and a correct answer. Would you please help me understand the following step? I´m sure, you are right. It´s just my inert understanding of a detail in your nice solution:

It is the following equality:

\[\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \]

Thankyou for being patient with me!(Blush)

Sure!

It's a reordering of terms:
\[\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos \big(2^{2018}+2\cdot(2^{2017} -1)\big)x\Big) \\
\phantom{==} + \Big(\cos (2^{2018}-2)x + ... + \cos \big(2^{2018}-2\cdot(2^{2017}-1)-2\big)x\Big) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\Big) \\
\phantom{==}+ \Big(\cos (2^{2018}-2)x + ... + \cos(2^{0+1}-2)x\Big)\\
= \cos(2^{0+1}-2)x + ... + \cos (2^{2018}-2)x + \cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\\
=\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x
\]
(Angel)
 
I like Serena said:
Sure!

It's a reordering of terms:
\[\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos \big(2^{2018}+2\cdot(2^{2017} -1)\big)x\Big) \\
\phantom{==} + \Big(\cos (2^{2018}-2)x + ... + \cos \big(2^{2018}-2\cdot(2^{2017}-1)-2\big)x\Big) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\Big) \\
\phantom{==}+ \Big(\cos (2^{2018}-2)x + ... + \cos(2^{0+1}-2)x\Big)\\
= \cos(2^{0+1}-2)x + ... + \cos (2^{2018}-2)x + \cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\\
=\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x
\]
(Angel)

Hello again, I like Serena!

I´m still getting a different result, when I reorder the sum ... (Wondering) Please take a look:

To ease the algebra, I put $2^{2018}=N$.

This is the sum to be reordered:

\[S = \sum_{k=0}^{\frac{N}{2}-1}\left ( \cos (N+2k)x + \cos (N-2k-2)x \right )\]

The factors in the cosine arguments (for $k \in \left \{ 0,1,2,...,\frac{N}{2}-2, \frac{N}{2}-1\right \}$):

\[(N+2k) \in \left \{ N,\, N+2, \, N+4, ... ,\, 2N-6,\, 2N-4, \, 2N-2 \right \} \]
\[ (N-2k-2) \in \left \{ 0,\, 2, \, 4, ... ,\, N-6,\, N-4, \, N-2 \right \}\]

This arithmetic progression is also obtained, when I look at the factor $2k$:
\[2k \in \left \{ 0,2,4, ..., \, N-2,\, N,\, N+2, \, N+4, ...,2N-4, 2N-2\right \}\]
for $k \in \left \{ 0,1,2, ... ,\, N-2, \, N-1 \right \}$

So our sum, $S$, reduces to:

\[S = \sum_{k=0}^{N-1} \cos (2kx) = 1 + \sum_{k=1}^{2^{2018}-1} \cos (2kx)\]
 
  • #10
A small correction to I like Serena´s nice solution:

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\ =\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\ =\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\ =\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos 2kx \, dx \\
=\frac 1{2^{2018}} \left ( \int_{0}^{2\pi} 1 dx + \sum_{k=1}^{2^{2018}-1}\int_{0}^{2\pi}\cos 2kx \, dx \right ) \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1} \frac{\sin 2kx}{2k} \right]_{0}^{2\pi} \\ =\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\]

I have a suggested/alternative solution to the problem, but Opalg´s exemplary solution simply beats it.
Thankyou very much both of you, I like Serena and Opalg for your valuable contributions and participation!(Yes)
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K