MHB Evaluate Integral: \(\cos x \cdot \cdot \cdot \cos 2^{2018}x\)

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The integral \(\int_{0}^{2\pi}\cos x \cos 2x \cdots \cos(2^{2018}-1)x \: dx\) evaluates to \(\frac{\pi}{2^{2017}}\). The evaluation utilizes the identity \(\cos\theta \cos\phi = \frac{1}{2}(\cos(\theta+\phi) + \cos(\theta-\phi)\), leading to a systematic reduction of the product of cosines. Each step in the reduction results in a factor of \(2^{-n}\) for \(n\) terms, ultimately simplifying the integral. The contributions from the cosine terms at non-zero multiples of \(2\pi\) vanish, confirming the final result. The discussion highlights the clarity of the solution and the collaborative effort in understanding the steps involved.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]
 
Mathematics news on Phys.org
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]

Is that -1 supposed to be there?
 
Prove It said:
Is that -1 supposed to be there?

Yes!
 
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]

We can prove with induction and the product-to-sum-identity that:
$$\prod_{k=0}^n \cos 2^k x = \frac 1{2^n}\sum_{k=0}^{2^n-1}\cos (2k+1)x
$$
Thus:
$$\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\
=\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi} 1 + \sum_{k=1}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1}\frac{\sin(2^{k+1}-2)x}{2^{k+1}-2} \right]_{0}^{2\pi} \\
=\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\\
$$
 
lfdahl said:
Evaluate

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \: dx\]
[sp]Using the identity $\cos\theta \cos\phi = \frac12\bigl(\cos(\theta+\phi) + \cos(\theta-\phi)\bigr)$, $$\begin{aligned} \cos x\cos 2x &= 2^{-1}(\cos x + \cos 3x) \\ \cos x\cos 2x\cos 4x &= 2^{-1}(\cos x + \cos 3x)\cos 4x = 2^{-2}(\cos x + \cos 3x + \cos 5x + \cos 7x) \\ \cos x\cos 2x\cos 4x \cos8x &= 2^{-3}(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos 15x) \\ &\vdots \\ \cos x\cos 2x\cos 4x \cdots \cos(2^nx) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr). \end{aligned}$$ Then $$\begin{aligned}\cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr)\cos((2^{n+1}-1)x) \\ &= 2^{-n-1}\bigl(1 + \cos 2x + \cos 4x + \cos 6x + \cos 8x + \ldots + \cos ((2^{n+2}-2)x)\bigr). \end{aligned}$$ But $$\int_0^{2\pi}1\,dx = 2\pi,$$ and $$\int_0^{2\pi}\cos2k\pi\,dx = 0$$ for all nonzero integers $k$. Therefore $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x)\,dx = \frac{2\pi}{2^{n+1}} = \frac\pi{2^n}.$$ Finally, put $n=2017$ to get $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^{2017}x) \cos((2^{2018}-1)x)\,dx = \frac\pi{2^{2017}}.$$

[/sp]

Edit: Beaten to it by ILS!
 
I like Serena said:
We can prove with induction and the product-to-sum-identity that:
$$\prod_{k=0}^n \cos 2^k x = \frac 1{2^n}\sum_{k=0}^{2^n-1}\cos (2k+1)x
$$
Thus:
$$\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\
=\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi} 1 + \sum_{k=1}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1}\frac{\sin(2^{k+1}-2)x}{2^{k+1}-2} \right]_{0}^{2\pi} \\
=\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\\
$$
Great job, I like Serena! Thankyou for your participation and a correct answer. Would you please help me understand the following step? I´m sure, you are right. It´s just my inert understanding of a detail in your nice solution:

It is the following equality:

\[\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \]

Thankyou for being patient with me!(Blush)
 
Opalg said:
[sp]Using the identity $\cos\theta \cos\phi = \frac12\bigl(\cos(\theta+\phi) + \cos(\theta-\phi)\bigr)$, $$\begin{aligned} \cos x\cos 2x &= 2^{-1}(\cos x + \cos 3x) \\ \cos x\cos 2x\cos 4x &= 2^{-1}(\cos x + \cos 3x)\cos 4x = 2^{-2}(\cos x + \cos 3x + \cos 5x + \cos 7x) \\ \cos x\cos 2x\cos 4x \cos8x &= 2^{-3}(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos 15x) \\ &\vdots \\ \cos x\cos 2x\cos 4x \cdots \cos(2^nx) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr). \end{aligned}$$ Then $$\begin{aligned}\cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x) &= 2^{-n}\bigl(\cos x + \cos 3x + \cos 5x + \cos 7x + \ldots + \cos ((2^{n+1}-1)x)\bigr)\cos((2^{n+1}-1)x) \\ &= 2^{-n-1}\bigl(1 + \cos 2x + \cos 4x + \cos 6x + \cos 8x + \ldots + \cos ((2^{n+2}-2)x)\bigr). \end{aligned}$$ But $$\int_0^{2\pi}1\,dx = 2\pi,$$ and $$\int_0^{2\pi}\cos2k\pi\,dx = 0$$ for all nonzero integers $k$. Therefore $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^nx) \cos((2^{n+1}-1)x)\,dx = \frac{2\pi}{2^{n+1}} = \frac\pi{2^n}.$$ Finally, put $n=2017$ to get $$\int_0^{2\pi} \cos x\cos 2x\cos 4x \cdots \cos(2^{2017}x) \cos((2^{2018}-1)x)\,dx = \frac\pi{2^{2017}}.$$

[/sp]

Edit: Beaten to it by ILS!

Thankyou, Opalg for a very clear and lucid solution!

Just a small typo:

I´d expect the integrand $\cos 2k\pi$ to be $\cos 2kx$.
 
lfdahl said:
Great job, I like Serena! Thankyou for your participation and a correct answer. Would you please help me understand the following step? I´m sure, you are right. It´s just my inert understanding of a detail in your nice solution:

It is the following equality:

\[\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x \, dx \]

Thankyou for being patient with me!(Blush)

Sure!

It's a reordering of terms:
\[\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos \big(2^{2018}+2\cdot(2^{2017} -1)\big)x\Big) \\
\phantom{==} + \Big(\cos (2^{2018}-2)x + ... + \cos \big(2^{2018}-2\cdot(2^{2017}-1)-2\big)x\Big) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\Big) \\
\phantom{==}+ \Big(\cos (2^{2018}-2)x + ... + \cos(2^{0+1}-2)x\Big)\\
= \cos(2^{0+1}-2)x + ... + \cos (2^{2018}-2)x + \cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\\
=\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x
\]
(Angel)
 
I like Serena said:
Sure!

It's a reordering of terms:
\[\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos \big(2^{2018}+2\cdot(2^{2017} -1)\big)x\Big) \\
\phantom{==} + \Big(\cos (2^{2018}-2)x + ... + \cos \big(2^{2018}-2\cdot(2^{2017}-1)-2\big)x\Big) \\
= \Big(\cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\Big) \\
\phantom{==}+ \Big(\cos (2^{2018}-2)x + ... + \cos(2^{0+1}-2)x\Big)\\
= \cos(2^{0+1}-2)x + ... + \cos (2^{2018}-2)x + \cos 2^{2018}x + \cos (2^{2018}+2)x + ... + \cos (2^{2018+1} - 2)x\\
=\sum_{k=0}^{2^{2018}-1}\cos (2^{k+1}-2)x
\]
(Angel)

Hello again, I like Serena!

I´m still getting a different result, when I reorder the sum ... (Wondering) Please take a look:

To ease the algebra, I put $2^{2018}=N$.

This is the sum to be reordered:

\[S = \sum_{k=0}^{\frac{N}{2}-1}\left ( \cos (N+2k)x + \cos (N-2k-2)x \right )\]

The factors in the cosine arguments (for $k \in \left \{ 0,1,2,...,\frac{N}{2}-2, \frac{N}{2}-1\right \}$):

\[(N+2k) \in \left \{ N,\, N+2, \, N+4, ... ,\, 2N-6,\, 2N-4, \, 2N-2 \right \} \]
\[ (N-2k-2) \in \left \{ 0,\, 2, \, 4, ... ,\, N-6,\, N-4, \, N-2 \right \}\]

This arithmetic progression is also obtained, when I look at the factor $2k$:
\[2k \in \left \{ 0,2,4, ..., \, N-2,\, N,\, N+2, \, N+4, ...,2N-4, 2N-2\right \}\]
for $k \in \left \{ 0,1,2, ... ,\, N-2, \, N-1 \right \}$

So our sum, $S$, reduces to:

\[S = \sum_{k=0}^{N-1} \cos (2kx) = 1 + \sum_{k=1}^{2^{2018}-1} \cos (2kx)\]
 
  • #10
A small correction to I like Serena´s nice solution:

\[\int_{0}^{2\pi}\cos x \cos 2x \cos 4x \cdot \cdot \cos 2^{2017}x \cos (2^{2018}-1)x \, dx \\ =\int_{0}^{2\pi}\left(\prod_{k=0}^{2017}\cos 2^kx\right) \cos (2^{2018}-1)x \, dx \\ =\frac 1{2^{2017}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\cos (2k+1)x \cos (2^{2018}-1)x \, dx \\ =\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2017}-1}\left(\cos (2^{2018}+2k)x + \cos (2^{2018}-2k-2)x\right) \, dx \\
=\frac 1{2^{2018}}\int_{0}^{2\pi}\sum_{k=0}^{2^{2018}-1}\cos 2kx \, dx \\
=\frac 1{2^{2018}} \left ( \int_{0}^{2\pi} 1 dx + \sum_{k=1}^{2^{2018}-1}\int_{0}^{2\pi}\cos 2kx \, dx \right ) \\
=\frac 1{2^{2018}}\left[ x + \sum_{k=1}^{2^{2018}-1} \frac{\sin 2kx}{2k} \right]_{0}^{2\pi} \\ =\frac {2\pi}{2^{2018}} = \frac\pi{2^{2017}}\]

I have a suggested/alternative solution to the problem, but Opalg´s exemplary solution simply beats it.
Thankyou very much both of you, I like Serena and Opalg for your valuable contributions and participation!(Yes)
 

Similar threads

Back
Top