Evaluate limit of this integral using positive summability kernels

  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Fourier analysis
Click For Summary
The discussion focuses on evaluating an integral using positive summability kernels, specifically through integration by parts. The user derives an expression involving the antiderivative of the function, leading to a simplified integral that evaluates to zero. They identify that the function nφ(nx) acts as a positive summability kernel in this context. Ultimately, the integral evaluates to -f'(0), and a suggestion is made to verify this by substituting f(x) with x^r. The conversation highlights the application of positive summability kernels in integral evaluation.
psie
Messages
315
Reaction score
40
Homework Statement
Let ##\varphi## be defined by ##\varphi(x)=\frac{15}{16}(x^2-1)^2## for ##|x|<1## and ##\varphi(x)=0## otherwise. Let ##f## be a function with a continuous derivative. Find the limit $$\lim_{n\to\infty}\int_{-1}^1n^2\varphi '(nx)f(x)dx.$$
Relevant Equations
Positive summability kernels, see e.g. Wikipedia.
Integrating the integral by parts, using that the antiderivative of ##\varphi'(nx)## is ##\frac1{n}\varphi(nx)##, I get
$$\big[n\varphi(xn)f(x)\big]_{-1}^1-\int_{-1}^1 n\varphi(nx)f'(x)dx=0-\int_{-1}^1 n\varphi(nx)f'(x)dx.$$ I used the fact that ##\varphi(n)## and ##\varphi(-n)## both equal ##0##, since ##n\geq 1##.

However, I'm stuck here. This is a problem from a section on positive summability kernels, but I have been unable to verify what the kernel is in this exercise, if there is any. Appreciate any help.
 
Physics news on Phys.org
I solved it I think. ## n\varphi(nx)## is a positive summability kernel and the integral therefor evaluates to ##-f'(0)##.
 
You could try checking by plugging in ##f(x)=x^r##.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...