MHB Evaluate p^{2014}+q^{2014}+r^{2014}

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P(x)=x^3+px^2+qx+r$ and $Q(x)=x^3+qx^2+rx+p$, where $p,\,q,\,r$ are integers with $r\ne 0$. Suppose $P(1)=0$ and the roots of $Q(x)$ are squares of the roots of $P(x)$. Find the value of $p^{2014}+q^{2014}+r^{2014}$.
 
Mathematics news on Phys.org
anemone said:
Let $P(x)=x^3+px^2+qx+r$ and $Q(x)=x^3+qx^2+rx+p$, where $p,\,q,\,r$ are integers with $r\ne 0$. Suppose $P(1)=0$ and the roots of $Q(x)$ are squares of the roots of $P(x)$. Find the value of $p^{2014}+q^{2014}+r^{2014}$.
[sp]If the roots of $Q(x)$ are the squares of the roots of $P(x)$, then the roots of $Q(x^2)$ are the roots of $P(x)$ together with their negatives. The (monic) polynomial whose roots are the negatives of those of $P(x)$ is $P(-x)$. Therefore $Q(x^2) = P(x)P(-x)$. Thus $$x^6 + qx^4 + rx^2 + p = (x^3+px^2+qx+r) (x^3-px^2+qx-r) = x^6 + (2q-p^2)x^4 + (q^2-2pr)x^2 - r^2.$$ Compare coefficients of powers of $x$ to see that $$q=p^2, \qquad r = q^2-2pr, \qquad p=-r^2.$$ Hence $p=-r^2$, $q = r^4$ and $r^8+2r^3 - r = 0.$ But $r\ne0$, so $r^7 + 2r^2 - 1 = 0.$ The only integer solution of that is $r=-1$, so that $p=-r^2 = -1$ and $q = p^2 = 1.$ Finally, $p^{2014}+q^{2014}+r^{2014} = 1+1+1 = 3.$

[Note: It follows that $P(1) = 1+p+q+r = 1 - 1 + 1 - 1 = 0$. So the condition $P(1) = 0$ is automatically satisfied, and it seems that this condition was not needed in the statement of the problem.][/sp]
 
Opalg said:
[sp]If the roots of $Q(x)$ are the squares of the roots of $P(x)$, then the roots of $Q(x^2)$ are the roots of $P(x)$ together with their negatives. The (monic) polynomial whose roots are the negatives of those of $P(x)$ is $P(-x)$. Therefore $Q(x^2) = P(x)P(-x)$. Thus $$x^6 + qx^4 + rx^2 + p = (x^3+px^2+qx+r) (x^3-px^2+qx-r) = x^6 + (2q-p^2)x^4 + (q^2-2pr)x^2 - r^2.$$ Compare coefficients of powers of $x$ to see that $$q=p^2, \qquad r = q^2-2pr, \qquad p=-r^2.$$ Hence $p=-r^2$, $q = r^4$ and $r^8+2r^3 - r = 0.$ But $r\ne0$, so $r^7 + 2r^2 - 1 = 0.$ The only integer solution of that is $r=-1$, so that $p=-r^2 = -1$ and $q = p^2 = 1.$ Finally, $p^{2014}+q^{2014}+r^{2014} = 1+1+1 = 3.$

[Note: It follows that $P(1) = 1+p+q+r = 1 - 1 + 1 - 1 = 0$. So the condition $P(1) = 0$ is automatically satisfied, and it seems that this condition was not needed in the statement of the problem.][/sp]

Well done Opalg! Your approach made it very obvious that we don't need the condition where $P(1)=0$ to solve for the problem, bravo! But, I think if we solved it using another route, then that condition is kind of needed.:o

Note that $P(1)=Q(1)=0$, so 1 is a root of both $P(x)$ and $Q(x)$. Let $m$ and $n$ be the other two roots of $P(x)$, so $m^2$ and $n^2$ are the other two roots of $Q(x)$.

We then get $mn=-r$ and $m^2n^2=-p$ so $p=-r^2$. Also, $(-p)^2=(m+n+1)^2=m^2+n^2+1+2(mn+m+n)=-q+2q=q$.

Therefore $q=r^4$. Since $P(1)=0$, we therefore get $1+r-r^2+r^4=0$. Factorizing, we get $(r+1)(r^3-r^2+1)=0$. Note that $r^3-r^2+1=0$ has no integer root and hence $r=-1$, $q=1$, $p=1$ and $\therefore p^{2014}+q^{2014}+r^{2014}=3$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top