MHB Evaluate Telescoping Sums:a/b for Integer k>0

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Sums
Click For Summary
The discussion focuses on evaluating telescoping sums for two series. For the first series, the sum $\sum_1^\infty\frac{(-1)^{n-1}}{n(n+2)}$ simplifies to $\frac{1}{4}$. The second series, $\sum_1^\infty\frac{1}{n(n+k)}$, can be expressed as $\frac{1}{k}(\frac{1}{1}+\ldots+\frac{1}{k})$, but further simplification is not possible due to the nature of harmonic sums. Participants share insights on how to approach the second series by considering specific integer values for k. The conversation emphasizes the cancellation of terms in the telescoping process.
alexmahone
Messages
303
Reaction score
0
Evaluate using telescoping sums:

(a) $\sum_1^\infty\frac{(-1)^{n-1}}{n(n+2)}$

(b) $\sum_1^\infty\frac{1}{n(n+k)}$, $k$ integer $>0$

My attempt:

(a)$\frac{1}{n(n+2)}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)$

Adding the terms for $n$ even, we get

$-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\ldots\right)=-\frac{1}{4}$

Adding the terms for $n$ odd, we get

$\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\ldots\right)=\frac{1}{2}$

So, the total is $-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}$

(b) $\sum_1^\infty\frac{1}{n(n+k)}=\sum_1^\infty\frac{1}{k}\left(\frac{1}{n}-\frac{1}{n+k}\right)$

$=\frac{1}{k}\left(\frac{1}{1}-\frac{1}{1+k}+\frac{1}{2}-\frac{1}{2+k}+\frac{1}{3}-\frac{1}{3+k}+\ldots\right)$

How do I proceed?
 
Last edited:
Physics news on Phys.org
Hello,

****************** latex. I hate this version...Forget it for the first one... But please post your thing at once, because you're constantly editing and it's really ticking me off to try writing something that yourself are currently writing !

As for the second one, reason as if k=2, how would you do ? Then it'd be the same except that it's a little more, but in the end they'll all cancel each other out.
 
Last edited by a moderator:
Moo said:
As for the second one, reason as if k=2, how would you do ? Then it'd be the same except that it's a little more, but in the end they'll all cancel each other out.

I think the answer is $\frac{1}{k}(\frac{1}{1}+\ldots+\frac{1}{k})$. Can that be simplified further?
 
Last edited:
Yes, that's the answer, and no further simplification follows, since the harmonic sum doesn't have much nice properties.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K