MHB Evaluate the double sum of a product

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product Sum
Click For Summary
The double sum of the product is evaluated using the expression $$\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left(n\prod_{i=0}^{n}\frac{1}{j+i}\right)$$. The inner product simplifies by recognizing it as a function of \( j \) and \( n \), leading to a transformation that allows for easier summation. The suggested solution involves manipulating the terms to express the sum in a more manageable form. Ultimately, the evaluation reveals a closed-form expression for the double sum. The discussion emphasizes the importance of recognizing patterns in infinite series and products for simplification.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the following double sum of a product:

$$\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left(n\prod_{i=0}^{n}\frac{1}{j+i}\right)$$
 
Mathematics news on Phys.org
Hint:

The answer is: $e-1.$
 
Suggested solution:

Let
\[\alpha_j(n) = \frac{1}{j(j+1)(j+2)...(j+n)}\]
and let
\[\beta_j(n) = \frac{1}{j(j+1)(j+2)...(j+n-1)}\]

Consider the difference:

\[\beta_j(n)-\beta_{j+1}(n) = \frac{1}{j(j+1)(j+2)...(j+n-1)}-\frac{1}{(j+1)(j+2)(j+3)...(j+n)} \\\\ = \frac{j+n-j}{j(j+1)(j+2)...(j+n)} \\\\ = n \alpha_j(n)\]

Now
\[\sum_{j=1}^{\infty} \alpha_j(n) = \frac{1}{n}\sum_{j=1}^{\infty}\left ( \beta _j(n)-\beta _{j+1}(n) \right )\]

is a telescoping sum, and we get (the limit of $\beta$ is zero):

\[\sum_{j=1}^{\infty} \alpha_j(n) = \frac{1}{n}\left ( \beta _1(n)-\lim_{j \to \infty}\beta _j(n) \right ) =\frac{\beta _1(n)}{n}= \frac{1}{n \cdot n!}\]

Finally, we´re able to evaluate the given double sum above:

\[\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left (n\prod_{i=0}^{n}\frac{1}{j+i} \right ) = \sum_{n=1}^{\infty}n \sum_{j=1}^{\infty} \alpha _j(n) = \sum_{n=1}^{\infty}\frac{1}{n!} = e-1.\]
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
15
Views
2K
Replies
20
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K