MHB Evaluate the double sum of a product

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product Sum
Click For Summary
The double sum of the product is evaluated using the expression $$\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left(n\prod_{i=0}^{n}\frac{1}{j+i}\right)$$. The inner product simplifies by recognizing it as a function of \( j \) and \( n \), leading to a transformation that allows for easier summation. The suggested solution involves manipulating the terms to express the sum in a more manageable form. Ultimately, the evaluation reveals a closed-form expression for the double sum. The discussion emphasizes the importance of recognizing patterns in infinite series and products for simplification.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the following double sum of a product:

$$\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left(n\prod_{i=0}^{n}\frac{1}{j+i}\right)$$
 
Mathematics news on Phys.org
Hint:

The answer is: $e-1.$
 
Suggested solution:

Let
\[\alpha_j(n) = \frac{1}{j(j+1)(j+2)...(j+n)}\]
and let
\[\beta_j(n) = \frac{1}{j(j+1)(j+2)...(j+n-1)}\]

Consider the difference:

\[\beta_j(n)-\beta_{j+1}(n) = \frac{1}{j(j+1)(j+2)...(j+n-1)}-\frac{1}{(j+1)(j+2)(j+3)...(j+n)} \\\\ = \frac{j+n-j}{j(j+1)(j+2)...(j+n)} \\\\ = n \alpha_j(n)\]

Now
\[\sum_{j=1}^{\infty} \alpha_j(n) = \frac{1}{n}\sum_{j=1}^{\infty}\left ( \beta _j(n)-\beta _{j+1}(n) \right )\]

is a telescoping sum, and we get (the limit of $\beta$ is zero):

\[\sum_{j=1}^{\infty} \alpha_j(n) = \frac{1}{n}\left ( \beta _1(n)-\lim_{j \to \infty}\beta _j(n) \right ) =\frac{\beta _1(n)}{n}= \frac{1}{n \cdot n!}\]

Finally, we´re able to evaluate the given double sum above:

\[\sum_{j=1}^{\infty}\sum_{n=1}^{\infty}\left (n\prod_{i=0}^{n}\frac{1}{j+i} \right ) = \sum_{n=1}^{\infty}n \sum_{j=1}^{\infty} \alpha _j(n) = \sum_{n=1}^{\infty}\frac{1}{n!} = e-1.\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K