MHB Evaluate the integral ∫[arctan(ax)−arctan(bx)]/xdx

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral ∫[arctan(ax)−arctan(bx)]/xdx is evaluated over the interval from 0 to infinity, where a and b are positive real numbers. The discussion includes a solution provided by a participant, indicating engagement with the challenge. Appreciation is expressed for the contributions made by participants in the thread. The focus remains on the mathematical evaluation of the integral and the collaborative nature of the discussion. Overall, the thread highlights the process of solving a specific integral involving arctangent functions.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the integral:

\[ \int_{0}^{\infty}\frac{\arctan(ax)-\arctan(bx)}{x}dx\]

where $a,b \in \mathbb{R}_+$
 
Mathematics news on Phys.org
It's been a while since I've done one of these challenges. :D Here is my solution.

The answer is $\displaystyle \frac{\pi}{2}\ln\frac{a}{b}$. Note

$$\arctan(ax) - \arctan(bx) = \int_b^a \frac{x}{1 + (tx)^2}\, dt$$

Fubini's theorem allows us to write

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \int_b^a \int_0^\infty \frac{dt}{1 + (tx)^2}\, dx$$

This is justified as

$$\int_1^\infty \frac{dt}{1 + (tx)^2} < \int_1^\infty \frac{dt}{t^2x^2} = \frac{1}{x^2}$$ and $\displaystyle \int_b^a \frac{dx}{x^2} < \infty$.

Now

$$\int_0^\infty \frac{dt}{1 + (tx)^2} = \frac{\arctan(tx)}{x}\bigg|_{t = 0}^\infty = \frac{\pi}{2x}$$ and $\displaystyle\int_b^a \frac{\pi}{2x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$. Therefore

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$$
 
Euge said:
It's been a while since I've done one of these challenges. :D Here is my solution.

The answer is $\displaystyle \frac{\pi}{2}\ln\frac{a}{b}$. Note

$$\arctan(ax) - \arctan(bx) = \int_b^a \frac{x}{1 + (tx)^2}\, dt$$

Fubini's theorem allows us to write

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \int_b^a \int_0^\infty \frac{dt}{1 + (tx)^2}\, dx$$

This is justified as

$$\int_1^\infty \frac{dt}{1 + (tx)^2} < \int_1^\infty \frac{dt}{t^2x^2} = \frac{1}{x^2}$$ and $\displaystyle \int_b^a \frac{dx}{x^2} < \infty$.

Now

$$\int_0^\infty \frac{dt}{1 + (tx)^2} = \frac{\arctan(tx)}{x}\bigg|_{t = 0}^\infty = \frac{\pi}{2x}$$ and $\displaystyle\int_b^a \frac{\pi}{2x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$. Therefore

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$$

Excellent, Euge! Thankyou very much for your participation!:cool:
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K