Evaluate the integral ∫[arctan(ax)−arctan(bx)]/xdx

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral evaluated is ∫[arctan(ax)−arctan(bx)]/xdx from 0 to ∞, where a and b are positive real numbers. The discussion highlights the techniques used to solve this integral, emphasizing the importance of understanding the properties of the arctangent function and its behavior at infinity. Participants shared their solutions and insights, confirming the integral's convergence and providing various methods for evaluation.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with the arctangent function and its properties
  • Knowledge of integration techniques, particularly for rational functions
  • Basic concepts of limits and convergence in calculus
NEXT STEPS
  • Research techniques for evaluating improper integrals
  • Study the properties of the arctangent function in detail
  • Learn about integration by parts and its applications
  • Explore advanced calculus topics, such as contour integration
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate the integral:

\[ \int_{0}^{\infty}\frac{\arctan(ax)-\arctan(bx)}{x}dx\]

where $a,b \in \mathbb{R}_+$
 
Physics news on Phys.org
It's been a while since I've done one of these challenges. :D Here is my solution.

The answer is $\displaystyle \frac{\pi}{2}\ln\frac{a}{b}$. Note

$$\arctan(ax) - \arctan(bx) = \int_b^a \frac{x}{1 + (tx)^2}\, dt$$

Fubini's theorem allows us to write

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \int_b^a \int_0^\infty \frac{dt}{1 + (tx)^2}\, dx$$

This is justified as

$$\int_1^\infty \frac{dt}{1 + (tx)^2} < \int_1^\infty \frac{dt}{t^2x^2} = \frac{1}{x^2}$$ and $\displaystyle \int_b^a \frac{dx}{x^2} < \infty$.

Now

$$\int_0^\infty \frac{dt}{1 + (tx)^2} = \frac{\arctan(tx)}{x}\bigg|_{t = 0}^\infty = \frac{\pi}{2x}$$ and $\displaystyle\int_b^a \frac{\pi}{2x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$. Therefore

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$$
 
Euge said:
It's been a while since I've done one of these challenges. :D Here is my solution.

The answer is $\displaystyle \frac{\pi}{2}\ln\frac{a}{b}$. Note

$$\arctan(ax) - \arctan(bx) = \int_b^a \frac{x}{1 + (tx)^2}\, dt$$

Fubini's theorem allows us to write

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \int_b^a \int_0^\infty \frac{dt}{1 + (tx)^2}\, dx$$

This is justified as

$$\int_1^\infty \frac{dt}{1 + (tx)^2} < \int_1^\infty \frac{dt}{t^2x^2} = \frac{1}{x^2}$$ and $\displaystyle \int_b^a \frac{dx}{x^2} < \infty$.

Now

$$\int_0^\infty \frac{dt}{1 + (tx)^2} = \frac{\arctan(tx)}{x}\bigg|_{t = 0}^\infty = \frac{\pi}{2x}$$ and $\displaystyle\int_b^a \frac{\pi}{2x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$. Therefore

$$\int_0^\infty \frac{\arctan(ax) - \arctan(bx)}{x}\, dx = \frac{\pi}{2}\ln\frac{a}{b}$$

Excellent, Euge! Thankyou very much for your participation!:cool:
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K