MHB Evaluate the limit of a trigonometric expression

Click For Summary
The limit of the trigonometric expression as x approaches 0 is evaluated by analyzing the behavior of the functions involved. The expression involves the sine, tangent, and their respective inverse functions, which require careful manipulation to simplify. Participants discuss various approaches to find the limit, including L'Hôpital's rule and Taylor series expansions. The limit ultimately converges to a specific value, demonstrating the interplay between these trigonometric functions. The discussion highlights the importance of understanding limits in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)}\]
 
Mathematics news on Phys.org
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
 
Theia said:
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
Hi, Theia! Thankyou for a nice solution and your participation!(Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K