Evaluate the limit of a trigonometric expression

Click For Summary
SUMMARY

The limit of the trigonometric expression \(\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)}\) evaluates to 0. This conclusion is reached by applying L'Hôpital's Rule, which is necessary due to the indeterminate form encountered as \(x\) approaches 0. The derivatives of the numerator and denominator are computed, leading to a clear resolution of the limit.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with L'Hôpital's Rule
  • Knowledge of trigonometric functions and their inverses
  • Basic differentiation techniques
NEXT STEPS
  • Study L'Hôpital's Rule in depth
  • Explore the properties of trigonometric functions and their inverses
  • Practice evaluating limits involving indeterminate forms
  • Learn about Taylor series expansions for trigonometric functions
USEFUL FOR

Students of calculus, mathematicians, and anyone interested in advanced limit evaluations and trigonometric function properties.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)}\]
 
Physics news on Phys.org
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
 
Theia said:
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
Hi, Theia! Thankyou for a nice solution and your participation!(Yes)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K