MHB Evaluate the limit of a trigonometric expression

Click For Summary
The limit of the trigonometric expression as x approaches 0 is evaluated by analyzing the behavior of the functions involved. The expression involves the sine, tangent, and their respective inverse functions, which require careful manipulation to simplify. Participants discuss various approaches to find the limit, including L'Hôpital's rule and Taylor series expansions. The limit ultimately converges to a specific value, demonstrating the interplay between these trigonometric functions. The discussion highlights the importance of understanding limits in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)}\]
 
Mathematics news on Phys.org
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
 
Theia said:
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
Hi, Theia! Thankyou for a nice solution and your participation!(Yes)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
1K
Replies
8
Views
1K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K