MHB Evaluate the limit of a trigonometric expression

Click For Summary
The limit of the trigonometric expression as x approaches 0 is evaluated by analyzing the behavior of the functions involved. The expression involves the sine, tangent, and their respective inverse functions, which require careful manipulation to simplify. Participants discuss various approaches to find the limit, including L'Hôpital's rule and Taylor series expansions. The limit ultimately converges to a specific value, demonstrating the interplay between these trigonometric functions. The discussion highlights the importance of understanding limits in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate:

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)}\]
 
Mathematics news on Phys.org
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
 
Theia said:
Something like this(?):

Assume $$|x| \approx 0$$. Then

$$\begin{align*} \sin (\arctan x)-\tan (\arcsin x) &= \frac{x}{\sqrt{1 + x^2}} - \frac{x}{\sqrt{1-x^2}} \\
&= x\left( 1 - \frac{x^2}{2} + \cdots \right) - x\left( 1 + \frac{x^2}{2} \right) \\
&= -x^3 + \cdots\end{align*}$$

and

$$\begin{align*} \arcsin (\tan x) - \arctan (\sin x) &= \tan x + \frac{\tan^3 x}{6} + \cdots - \sin x + \frac{\sin^3 x}{3} + \cdots \\
&= x + \frac{x^3}{3} + \cdots +\frac{x^3}{6} + \cdots - \left( x - \frac{x^3}{6} + \cdots \right) + \frac{x^3}{3} + \cdots \\
&= x^3 + \cdots\end{align*}$$.

Hence

\[\lim_{x\rightarrow 0}\frac{\sin (\arctan x)-\tan (\arcsin x)}{\arcsin (\tan x)-\arctan (\sin x)} = -1.\]
Hi, Theia! Thankyou for a nice solution and your participation!(Yes)