MHB Evaluate the product of sines: sin1sin2sin3…sin89

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
 
Mathematics news on Phys.org
Could you give a hint please? (Angel)
 
Theia said:
Could you give a hint please? (Angel)

Hint:

Use the identity: $\sin (x)\sin (60+x)\sin (60-x) = \frac{1}{4}\sin 3x$ (Nod)
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)

Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]
 
I like Serena said:
Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$

Great job, I like Serena! Thankyou very much for a nice solution!(Happy)

- - - Updated - - -

Opalg said:
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]

Thankyou very much, Opalg for another exemplary solution!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top