MHB Evaluate the product of sines: sin1sin2sin3…sin89

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product
AI Thread Summary
The product of sines, \( P = \sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ \), can be evaluated using the formula \( \sin\frac{\pi}{m}\sin\frac{2\pi}{m}\cdots\sin\frac{(m-1)\pi}{m} = \frac{m}{2^{m-1}} \). By setting \( m = 180 \), it follows that \( \sin 1^\circ \sin 2^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}} \). Utilizing the property \( \sin \theta = \sin(180^\circ - \theta) \) and knowing \( \sin 90^\circ = 1 \), we derive that \( (\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ)^2 = \frac{180}{2^{179}} \). Taking the square root yields \( \sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac{5}{2}} \).
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
 
Mathematics news on Phys.org
Could you give a hint please? (Angel)
 
Theia said:
Could you give a hint please? (Angel)

Hint:

Use the identity: $\sin (x)\sin (60+x)\sin (60-x) = \frac{1}{4}\sin 3x$ (Nod)
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)

Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]
 
I like Serena said:
Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$

Great job, I like Serena! Thankyou very much for a nice solution!(Happy)

- - - Updated - - -

Opalg said:
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]

Thankyou very much, Opalg for another exemplary solution!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top