MHB Evaluate the product of sines: sin1sin2sin3…sin89

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Product
AI Thread Summary
The product of sines, \( P = \sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ \), can be evaluated using the formula \( \sin\frac{\pi}{m}\sin\frac{2\pi}{m}\cdots\sin\frac{(m-1)\pi}{m} = \frac{m}{2^{m-1}} \). By setting \( m = 180 \), it follows that \( \sin 1^\circ \sin 2^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}} \). Utilizing the property \( \sin \theta = \sin(180^\circ - \theta) \) and knowing \( \sin 90^\circ = 1 \), we derive that \( (\sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ)^2 = \frac{180}{2^{179}} \). Taking the square root yields \( \sin 1^\circ \sin 2^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac{5}{2}} \).
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
 
Mathematics news on Phys.org
Could you give a hint please? (Angel)
 
Theia said:
Could you give a hint please? (Angel)

Hint:

Use the identity: $\sin (x)\sin (60+x)\sin (60-x) = \frac{1}{4}\sin 3x$ (Nod)
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)

Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$
 
lfdahl said:
Evaluate without the use of a calculator the product:$P = \sin 1\sin 2\sin 3…\sin 89$

(all angles in degrees)
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]
 
I like Serena said:
Using the identities
$$\sin x\sin(60-x)\sin(60+x)=\frac 14\sin 3x \tag 1$$
$$\sin x\sin(90-x)=\frac 12\sin 2x \tag 2$$
$$\sin 36 = \sqrt{\frac 58 - \frac{\sqrt 5}8} \tag 3$$
$$\sin 72 = \sqrt{\frac 58 + \frac{\sqrt 5}8} \tag 4$$
we get:
$$
\overbrace{\sin 1\sin2 ...\sin 89}^{89\text{ factors}}
=\frac 1 {4^{29}} \overbrace{\sin 3\sin 6...\sin 87}^{29}\cdot \sin 30 \cdot\sin 60 \\
=\frac 1 {4^{29+9}} \overbrace{\sin 9\sin 18...\sin 81}^{9}\cdot \sin^2 30 \cdot\sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^4}\overbrace{\sin 18\sin 36\sin 54\sin 72}^{4}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1 {4^{38}} \frac 1{2^{4+2}}\overbrace{\sin 36\sin 72}^{2}\cdot \sin^2 30 \cdot\sin 45 \cdot \sin^2 60 \\
=\frac 1{2^{82}}\cdot\sqrt{\frac 58 - \frac{\sqrt 5}8}\sqrt{\frac 58 + \frac{\sqrt 5}8}\cdot \frac 14 \cdot\sqrt{\frac 12} \cdot \frac 34 \\
=\frac 3{2^{86}}\cdot \sqrt{\frac{5}{2^4}}\cdot\sqrt{\frac 12}\\
=\frac {3}{2^{88}}\sqrt{\frac 52}
$$

Great job, I like Serena! Thankyou very much for a nice solution!(Happy)

- - - Updated - - -

Opalg said:
[sp]Another way to do this is to use the formula $\sin\frac{\pi}{m}\sin\frac{2\pi}{m}\sin\frac{3\pi}{m}\cdots\,\sin\frac{(m-1)\pi}{m}=\frac{m}{2^{m-1}}$ (posed as a challenge question by greg1313 in https://mathhelpboards.com/challenge-questions-puzzles-28/trigonometric-product-challenge-21867.html, and neatly solved by kaliprasad using complex roots of unity). If you put $m= 180$ in that formula then it becomes $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 179^\circ = \frac{180}{2^{179}}.$$ But $\sin \theta = \sin(180^\circ - \theta)$, and $\sin 90^\circ = 1$, so we can write that as $$\bigl(\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ\bigr)^2= \frac{180}{2^{179}} = \frac{36\times 5}{2^{179}}.$$ Now take square roots to get $$\sin 1^\circ \sin 2^\circ \sin 3^\circ \cdots \sin 89^\circ = \frac{3}{2^{88}}\sqrt{\frac 52}.$$

[/sp]

Thankyou very much, Opalg for another exemplary solution!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top