MHB Evaluating a Limit Problem: Computing Integral

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Limit
Saitama
Messages
4,244
Reaction score
93
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Pranav said:
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!

With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$
 
chisigma said:
With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$

This is great, thanks a lot chisigma! :) (Bow)
 

Similar threads

Back
Top