MHB Evaluating a Limit Problem: Computing Integral

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion revolves around evaluating the limit problem involving the fractional part of a function. The initial approach involves substituting \(N = n^2\) to transform the limit into an integral form. A substitution of \(\frac{1}{\sqrt{x}} = u\) is proposed to facilitate the evaluation of the integral. The integral is ultimately expressed as a series, leading to the result \(2 - \frac{\pi^{2}}{6}\). The conversation concludes with appreciation for the assistance provided in solving the problem.
Saitama
Messages
4,244
Reaction score
93
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Pranav said:
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!

With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$
 
chisigma said:
With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$

This is great, thanks a lot chisigma! :) (Bow)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K