Evaluating a Limit Problem: Computing Integral

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit problem discussed involves computing the expression $$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$, where $\{ x\}$ denotes the fractional part of $x$. The solution utilizes the substitution $N=n^2$ and transforms the limit into an integral: $$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$. The integral is evaluated using the substitution $\frac{1}{\sqrt{x}} = u$, leading to the final result of $$2 - \frac{\pi^{2}}{6}$$.

PREREQUISITES
  • Understanding of limits and summations in calculus
  • Familiarity with fractional parts and integrals
  • Knowledge of substitution techniques in integration
  • Experience with series and convergence in mathematical analysis
NEXT STEPS
  • Study the properties of fractional parts in calculus
  • Learn advanced techniques for evaluating improper integrals
  • Explore convergence tests for infinite series
  • Investigate the relationship between sums and integrals in analysis
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced limit evaluation techniques and integral calculus.

Saitama
Messages
4,244
Reaction score
93
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Pranav said:
Problem:
Compute:
$$\lim_{n\rightarrow \infty} \frac{1}{n^2}\sum_{i=1}^{n^2} \left\{ \frac{n}{\sqrt{i}} \right\}$$
where $\{ x\}$ denotes the fractional part of $x$.

Attempt:
I substitute $N=n^2$ i.e
$$\lim_{N\rightarrow \infty} \frac{1}{N}\sum_{i=1}^{N} \left\{ \frac{1}{\sqrt{i/N}} \right\}=\int_0^1 \left\{ \frac{1}{\sqrt{x}}\right\}\,dx$$
but I don't see how to evaluate the definite integral. :confused:

Any help is appreciated. Thanks!

With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$
 
chisigma said:
With the substitution $\displaystyle \frac{1}{\sqrt{x}} = u$ is...

$\displaystyle \int_{0}^{1} \{ \frac{1}{\sqrt{x}}\}\ d x = 2\ \int_{1}^{\infty} \frac{\{u\}}{u^{3}}\ d u = 2\ \sum_{k=1}^{\infty} \int_{k}^{k + 1} \frac{u - k}{u^{3}}\ d u = $

$\displaystyle = 2\ \sum_{k=1}^{\infty} \int_{0}^{1} \frac{u}{(u + k)^{3}}\ d u = \sum_{k=1}^{\infty} \frac{1}{k\ (k + 1)^{2}} = 2 - \frac{\pi^{2}}{6}$Kind regards $\chi$ $\sigma$

This is great, thanks a lot chisigma! :) (Bow)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K