Evaluating an Infinite Sum of Binomial Coefficients

Click For Summary
SUMMARY

The forum discussion focuses on evaluating the infinite sum of binomial coefficients, specifically $\displaystyle\sum_{n=2009}^{\infty} \dfrac{1}{n \choose 2009}$. Participants confirm the correctness of the initial evaluation and introduce a telescoping sum approach as an alternative method. The discussion highlights the mathematical manipulation involved in transforming the sum into a more manageable form, ultimately leading to the conclusion that the sum can be expressed as $\dfrac{1}{n \choose k+1}$. This method provides a clear pathway to understanding the convergence of the series.

PREREQUISITES
  • Understanding of binomial coefficients, specifically ${n \choose k}$
  • Familiarity with infinite series and convergence concepts
  • Knowledge of telescoping sums and their properties
  • Basic algebraic manipulation skills for handling factorials
NEXT STEPS
  • Study the properties of binomial coefficients in depth
  • Learn about telescoping series and their applications in calculus
  • Explore convergence tests for infinite series
  • Investigate advanced techniques in combinatorial identities
USEFUL FOR

Mathematicians, students studying combinatorics, and anyone interested in advanced series evaluation techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}$.
 
Last edited:
Physics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{n=2009}^{\infty} \dfrac{1}{n \choose 2009}$.

Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:
 
Last edited:
Pranav said:
Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:

Well done, Pranav! I think what you have done is correct and that led to the correct answer as well.:cool:

The alternative way to evaluate this sum is to recognize that this sum is a telescoping sum and I will show you and others another good solution that I have seen somewhere online.

Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from the sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
 
Last edited:
anemone said:
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$
That looks like a nice approach. Thanks for sharing! :)
 
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from the sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
it should be:
$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n \choose k+1}\end{align*}$
 
Yes, Albert, you're right. I will leave my original post as is so that we won't confuse the readers and I apologize to the community for not bringing enough attention when I composed the solution.(Tmi):o
 

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K