MHB Evaluating an Infinite Sum of Binomial Coefficients

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{n=2009}^{\infty} \dfrac{1}{n \choose 2009}$.

Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:
 
Last edited:
Pranav said:
Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:

Well done, Pranav! I think what you have done is correct and that led to the correct answer as well.:cool:

The alternative way to evaluate this sum is to recognize that this sum is a telescoping sum and I will show you and others another good solution that I have seen somewhere online.

Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from teh sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
 
Last edited:
anemone said:
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$
That looks like a nice approach. Thanks for sharing! :)
 
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from teh sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
it should be:
$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n \choose k+1}\end{align*}$
 
Yes, Albert, you're right. I will leave my original post as is so that we won't confuse the readers and I apologize to the community for not bringing enough attention when I composed the solution.(Tmi):o
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top