Evaluating an Infinite Sum of Binomial Coefficients

Click For Summary

Discussion Overview

The discussion revolves around evaluating the infinite sum of binomial coefficients, specifically the expression $\sum_{n=2009}^{\infty} \frac{1}{n \choose 2009}$. Participants explore various approaches to this problem, including telescoping sums and algebraic manipulations.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the sum $\sum_{n=2009}^{\infty} \frac{1}{n \choose 2009}$ for evaluation.
  • Another participant suggests that the sum can be evaluated as a telescoping sum and indicates they will provide an alternative solution.
  • A third participant expresses agreement with the correctness of a previous solution and acknowledges the contribution of another participant.
  • Further mathematical manipulation is presented, showing a detailed algebraic approach to relate the sum to binomial coefficients.
  • One participant acknowledges a potential oversight in their original post and chooses to leave it unchanged to avoid confusion among readers.

Areas of Agreement / Disagreement

Participants express varying approaches to the problem, with some agreeing on the correctness of certain methods while others introduce alternative solutions. The discussion does not reach a consensus on a single method for evaluating the sum.

Contextual Notes

The discussion includes complex algebraic expressions and manipulations that may depend on specific interpretations of binomial coefficients. Some steps in the mathematical reasoning remain unresolved, and assumptions about the convergence of the series are not explicitly stated.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}$.
 
Last edited:
Physics news on Phys.org
anemone said:
Evaluate $\displaystyle \sum_{n=2009}^{\infty} \dfrac{1}{n \choose 2009}$.

Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:
 
Last edited:
Pranav said:
Rewrite the sum as:
$$\sum_{n=2009}^{\infty} \frac{1}{n\choose 2009}=(2009)!\sum_{n=2009}^{\infty} \frac{(n-2009)!}{n!}=(2009)!\sum_{n=2009}^{\infty} \frac{1}{n(n-1)(n-2)(n-3)\cdots (n-2008)}$$
$$=(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}$$
To evaluate the above sum, we have to integrate the following 2009 times:
$$\frac{1}{1-x}=1+x+x^2+x^3+\cdots$$
I am unsure if the following is going to be correct. To integrate the above 2009 times, I used the technique of repeated integral as shown here: Repeated Integral -- from Wolfram MathWorld

So from above, I have to find the following:
$$\int_0^x \frac{(x-t)^{2008}}{(1-t)(2008)!}\,dt$$
at $x=1$, i.e
$$\int_0^1 \frac{(1-t)^{2007}}{(2008)!}=\frac{1}{(2008)!(2008)}$$
Hence,
$$(2009)!\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)(n+3)\cdots (n+2009)}=(2009)!\frac{1}{(2008)!(2008)}=\boxed{ \dfrac {2009}{2008}}$$
I am not sure if what I have done is correct. :confused:

Well done, Pranav! I think what you have done is correct and that led to the correct answer as well.:cool:

The alternative way to evaluate this sum is to recognize that this sum is a telescoping sum and I will show you and others another good solution that I have seen somewhere online.

Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from the sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
 
Last edited:
anemone said:
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$
That looks like a nice approach. Thanks for sharing! :)
 
Observe that

$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n-1 \choose k}\end{align*}$

Now, we apply this with $k=2008$ and sum across all $n$ from 2009 to $\infty$, and get

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008} \lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \left( \dfrac{1}{n-1 \choose 2008}-\dfrac{1}{n \choose 2008} \right)$

Notice that all terms from the sum on the RHS cancel, except for the initial term of $\dfrac{1}{2008 \choose 2008}$, which is equal to 1, so we can conclude that

$\displaystyle\lower0.5ex{\mathop{\large \sum}_{n=2009}^{\infty}} \dfrac{1}{n \choose 2009}=\dfrac{2009}{2008}$
it should be:
$\begin{align*}\dfrac{k+1}{k} \left(\dfrac{1}{n-1 \choose k}-\dfrac{1}{n \choose k} \right)&=\dfrac{k+1}{k} \dfrac{{n \choose k}-{n-1 \choose k}}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{n-1 \choose k-1}{{n \choose k}{n-1 \choose k}}\\&=\dfrac{k+1}{k} \dfrac{(n-1)!k!k!(n-k-1)!(n-k)!}{n!(n-1)!(k-1)!(n-k)!}\\&=\dfrac{k+1}{k} \dfrac{k\cdot k! (n-k-1)!}{n!}\\&=\dfrac{1}{n \choose k+1}\end{align*}$
 
Yes, Albert, you're right. I will leave my original post as is so that we won't confuse the readers and I apologize to the community for not bringing enough attention when I composed the solution.(Tmi):o
 

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K