MHB Evaluating Contour Integral $f(z)$ Around $|z|=1$ Circle

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
The discussion focuses on evaluating the contour integral of the function \( f(z) = z^{a-1} (z + z^{-1})^{b} \) around the right half of the unit circle, with specific branch cuts established due to branch points at \( z=i, z=-i, \) and \( z=0 \). The integral is shown to equal \( 2i \sin\left(\frac{\pi(a-b)}{2}\right)\int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt \). A key point of confusion arises regarding the correct interpretation of \( -1 \) along the contour, specifically whether it corresponds to \( e^{i \pi} \) or \( e^{-i \pi} \), with the latter yielding the correct answer due to the branch cut along the negative real axis. The discussion concludes that careful parametrization of the contour is essential to avoid such ambiguities. Understanding these nuances is crucial for accurately evaluating the integral.
polygamma
Messages
227
Reaction score
0
I want to evaluate $ f(z) = z^{a-1} (z + z^{-1})^{b} \ \ (a > b >-1) $ around the right half of the circle $|z|=1$ (call it $C$).

I closed the contour with the vertical segment from $z=i$ to $z=-i$.

The integrand has branch points at $z=i, z=-i$, and $z=0$. So I made a cut along the positive imaginary axis from $i$ to $i \infty$, a cut along the negative imaginary axis from $-i$ to $-i \infty$, and a cut along the negative real axis (including the origin).

Under the restrictions placed on the parameters, all of the branch points are weak.

And it should be that $ \int_{C}z^{a-1}\left( z+z^{-1}\right)^{b}\ dz = 2i \sin\left(\frac{\pi(a-b)}{2}\right)\int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt$.

What I get is $\int_{C}z^{a-1}\left( z+z^{-1}\right)^{b}\ dz + \int_{1}^{0}(it)^{a-1}\left( it+(it)^{-1}\right)^{b}i \ dt - \int_{0}^{1}(-it)^{a-1}\left( -it+(-it)^{-1}\right)^{b}i \ dt = 0 $

or $\int_{C}z^{a-1}\left( z+z^{-1}\right)^{b}\ dz = i \ i^{a-b}\int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt + (-1)^{a+b-1} i \ i^{a-b}\int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt$

$ = i e^{i \pi \frac{(a-b)}{2}} \Big( \int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt + (-1)^{a+b-1} \int_{0}^{1}t^{a-b-1}\left(1-t^{2}\right)^{b}\ dt \Big)$

Now comes the part that has me completely confused. On that part of the contour does $-1= e^{i \pi}$ or does $-1 = e^{- i \pi}$? It can't be both due to the cut along the negative real axis. The latter leads to the correct answer. But I don't know why it's necessarily the latter.EDIT: I think this strange issue is the result of not being careful with the parametrization of the contour.
 
Last edited:
Physics news on Phys.org
Because of the branch cut along the negative real axis, I should have been careful and said

$\int_{C}z^{a-1}\left( z+z^{-1}\right)^{b}\ dz + \int_{1}^{0}(e^{\frac{i \pi}{2}})^{a-1}\left( te^{\frac{i \pi}{2}}+(e^{\frac{i \pi}{2}})^{-1}\right)^{b} e^{\frac{i \pi}{2}} \ dt + \int_{0}^{1}(te^{\frac{- i \pi}{2}})^{a-1}\left( te^{\frac{- i \pi}{2}}+(te^{\frac{- i \pi}{2}})^{-1}\right)^{b}e^{\frac{-i \pi}{2}} \ dt = 0$

and then I don't run into that problem
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
922
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K