MHB Evaluating Definite Integral $I$

Click For Summary
The integral I = ∫(1/(1-2x²)√(1-x)) dx from 0 to 1/2 is being evaluated using the substitution 1-x=t², leading to a transformed integral involving t. The expression simplifies to -2∫(1/(2t⁴-4t²+1)) dt from 1/2 to 1. Further analysis reveals that the denominator can be factored, allowing for the use of partial fractions to simplify the integration process. The discussion emphasizes the importance of proper substitution and algebraic manipulation in evaluating the integral. The final steps involve applying partial fraction decomposition to facilitate the integration.
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further, Help me

Thanks
 
Physics news on Phys.org
jacks said:
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further
This should work in principle, though I wouldn't want to try to do it by hand:
$$\begin{aligned}2t^4-4t^2+1 &= (2t^2-1)^2 -2t^4 \\ &= \bigl((2+\sqrt2)t^2 - 1\bigr)\bigl((2-\sqrt2)t^2 - 1\bigr) \\ &= \bigl(\sqrt{2 + \sqrt2}t + 1\bigr)\bigl(\sqrt{2 + \sqrt2}t - 1\bigr)\bigl(\sqrt{2 - \sqrt2}t + 1\bigr)\bigl(\sqrt{2 - \sqrt2}t - 1\bigr) \end{aligned}$$ Now use partial fractions!