MHB Evaluating Definite Integral $I$

Click For Summary
The integral I = ∫(1/(1-2x²)√(1-x)) dx from 0 to 1/2 is being evaluated using the substitution 1-x=t², leading to a transformed integral involving t. The expression simplifies to -2∫(1/(2t⁴-4t²+1)) dt from 1/2 to 1. Further analysis reveals that the denominator can be factored, allowing for the use of partial fractions to simplify the integration process. The discussion emphasizes the importance of proper substitution and algebraic manipulation in evaluating the integral. The final steps involve applying partial fraction decomposition to facilitate the integration.
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further, Help me

Thanks
 
Physics news on Phys.org
jacks said:
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further
This should work in principle, though I wouldn't want to try to do it by hand:
$$\begin{aligned}2t^4-4t^2+1 &= (2t^2-1)^2 -2t^4 \\ &= \bigl((2+\sqrt2)t^2 - 1\bigr)\bigl((2-\sqrt2)t^2 - 1\bigr) \\ &= \bigl(\sqrt{2 + \sqrt2}t + 1\bigr)\bigl(\sqrt{2 + \sqrt2}t - 1\bigr)\bigl(\sqrt{2 - \sqrt2}t + 1\bigr)\bigl(\sqrt{2 - \sqrt2}t - 1\bigr) \end{aligned}$$ Now use partial fractions!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
3K
Replies
14
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K