Evaluating Definite Integral $I$

Click For Summary
SUMMARY

The integral $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ is evaluated using the substitution $1-x=t^2$, leading to the transformed integral $I = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$. The polynomial $2t^4-4t^2+1$ can be factored into $(2t^2-1)^2 -2t^4$, which simplifies to a product of quadratic factors. The next step involves applying partial fraction decomposition to facilitate the integration process.

PREREQUISITES
  • Understanding of definite integrals and substitution methods in calculus
  • Familiarity with polynomial factorization techniques
  • Knowledge of partial fraction decomposition
  • Experience with integration techniques involving square roots
NEXT STEPS
  • Study the method of substitution in definite integrals
  • Learn about polynomial factorization and its applications in calculus
  • Research partial fraction decomposition techniques
  • Explore integration methods for functions involving square roots
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and integral evaluation, as well as educators seeking to enhance their understanding of integration techniques.

juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further, Help me

Thanks
 
Physics news on Phys.org
jacks said:
Evaluation of $\displaystyle \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$

$\bf{Try::}$ Let $\displaystyle I = \int^{\frac{1}{2}}_{0}\frac{1}{(1-2x^2)\sqrt{1-x}}dx$ Put $1-x=t^2\;,$ Then $dx=-2tdt$

So $\displaystyle I = \int^{1}_{\frac{1}{2}}\frac{2t}{\left[1-2(1-t^2)^2\right]t}dt = -2\int^{1}_{\frac{1}{2}}\frac{1}{2t^4-4t^2+1}dt$

Now how can i proceed further
This should work in principle, though I wouldn't want to try to do it by hand:
$$\begin{aligned}2t^4-4t^2+1 &= (2t^2-1)^2 -2t^4 \\ &= \bigl((2+\sqrt2)t^2 - 1\bigr)\bigl((2-\sqrt2)t^2 - 1\bigr) \\ &= \bigl(\sqrt{2 + \sqrt2}t + 1\bigr)\bigl(\sqrt{2 + \sqrt2}t - 1\bigr)\bigl(\sqrt{2 - \sqrt2}t + 1\bigr)\bigl(\sqrt{2 - \sqrt2}t - 1\bigr) \end{aligned}$$ Now use partial fractions!
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K