MHB Evaluating Integral $$\int \frac{e^{2x}}{u} du$$

Click For Summary
The integral $$\int \frac{e^{2x}}{e^{2x}-2}dx$$ can be solved using the substitution $$u=e^{2x}-2$$, leading to the differential $$du=2e^{2x}dx$$. The correct approach results in the integral $$\frac{1}{2}\int \frac{du}{u}$$, which simplifies to $$\frac{1}{2}\ln|u| + C$$. Substituting back for $$u$$ gives $$\frac{1}{2}\ln|e^{2x}-2| + C$$ as the final result. Properly calculating the differential is crucial for accurate integration.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\int_{}^{} \frac{e^{2x}}{e^{2x}-2}dx. \\u=e^{2x}-2\\du=e^{2x}$$
Now what?
 
Physics news on Phys.org
Your $u$-substitution is good, but you have calculated the differential incorrectly. Given:

$$u=e^{2x}-2$$

Then:

$$du=2e^{2x}\,dx$$
 
$\int_{}^{}\frac{1}{u}\ du\ dx = \ln\left({e^{2x}-2}\right)/2$
 
karush said:
$\int_{}^{}\frac{1}{u}\ du\ dx = \ln\left({e^{2x}-2}\right)/2$

You actually want:

$$\frac{1}{2}\int\frac{du}{u}=\frac{1}{2}\ln|u|+C=\frac{1}{2}\ln\left|e^{2x}-2\right|+C$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
895
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K