Evaluating Limits: Explaining Why Limit of f(x) Does Not Exist at x → 1

  • Thread starter Thread starter stripes
  • Start date Start date
  • Tags Tags
    Limits
Click For Summary
SUMMARY

The limit of the function f(x) = 3x - 1, defined on the set D = {1/n | n ∈ ℕ}, does not exist as x approaches 1. This is due to the absence of any sequence in D that converges to 1 while having f(x_n) converge in the reals. Specifically, since all elements of D are of the form 1/n, they are always less than or equal to 1, preventing convergence from the right. Consequently, the limit from the left does not exist either, confirming that the overall limit does not exist.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with sequences and convergence
  • Knowledge of piecewise functions
  • Basic graphing skills for visualizing functions
NEXT STEPS
  • Study the concept of limits and continuity in calculus
  • Learn about sequences and their convergence properties
  • Explore piecewise functions and their behavior at boundaries
  • Graph functions to visualize limits and discontinuities
USEFUL FOR

Students studying calculus, particularly those focusing on limits and sequences, as well as educators looking to clarify concepts related to function behavior at specific points.

stripes
Messages
262
Reaction score
0

Homework Statement



Consider a function f: D∈R, where D = {1/n for natural numbers n (1, 2, 3, 4, etc.)} and f(x) = 3x - 1 for all x in D. Explain why the limit of f(x) as x → 1 does not exist.

Homework Equations





The Attempt at a Solution



Uh I figured it would exist. We know a function does not have a limit at c if and only if there exists a sequence (x_n) where x_n ≠ c for all natural numbers n such that (x_n) converges to c but the sequence (f(x_n)) does not converge in the reals.

there will not exist such a sequence in D that converges to 1 because x_n cannot equal 1 for any n. so the limit must exist. i mean why wouldn't the limit exist?
 
Physics news on Phys.org
stripes said:

Homework Statement



Consider a function f: D∈R, where D = {1/n for natural numbers n (1, 2, 3, 4, etc.)} and f(x) = 3x - 1 for all x in D. Explain why the limit of f(x) as x → 1 does not exist.

Homework Equations





The Attempt at a Solution



Uh I figured it would exist. We know a function does not have a limit at c if and only if there exists a sequence (x_n) where x_n ≠ c for all natural numbers n such that (x_n) converges to c but the sequence (f(x_n)) does not converge in the reals.

there will not exist such a sequence in D that converges to 1 because x_n cannot equal 1 for any n. so the limit must exist.
x1 = 1/1 = 1, right?
stripes said:
i mean why wouldn't the limit exist?
 
Mark44 said:
x1 = 1/1 = 1, right?

does this have to do with the fact that the limit from the left does not exist? but 1/n is always less than or equal to 1...so things seem well-defined...
 
The limit from the left has a better chance of existing than the limit from the right, which is not to say that the limit from the left exists. It might be helpful to sketch a graph of f, keeping in mind that the inputs to f come from your set D.
 
i don't quite understand the notion of a limit from one direction having a better chance of existing. to me, it is extremely clear the limit from the left does not exist, so the limit itself doesn't exist.

but things are confusing because we're using 1/n, which goes a different direction than x. if that makes sense.
 
By "better chance" I wasn't implying that the limit from the left actually existed. What I was getting at is that there are numbers in D that are smaller than 1, but no numbers in D that are larger than 1, so there's no chance of a limit from the right existing.

stripes said:
but things are confusing because we're using 1/n, which goes a different direction than x. if that makes sense.
It might be helpful to look at set D like this:
D = {..., 1/5, 1/4, 1/3, 1/2, 1}
Note that you can never get closer to 1 than 1/2 for the numbers in D.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
34
Views
3K
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K