Evaluation of an experiment: PET scans of a small source along the x-axis

AI Thread Summary
The discussion focuses on evaluating a PET scan experiment where measurements were taken along the x-axis to analyze coincidence count rates. The participant calculated errors using Poisson statistics and is now plotting the results to fit a Gaussian curve and determine the Full Width at Half Maximum (FWHM). Concerns were raised about the presence of accidental counts affecting the Gaussian distribution, suggesting that a background model should be fitted to improve accuracy. Recommendations include starting with a simple linear background model and adjusting based on the goodness of fit. The conversation emphasizes the importance of accurately estimating background noise to refine the FWHM calculation and overall data interpretation.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Evaluation of an experiment
Relevant Equations
none
Hi,


I did a PET scan and positioned a sample almost in the center of a moving carriage, taking measurements along the x-axis and measuring the counts. Each measurement took 60 seconds, and I took a total of 27 measurements. Here are my results

Tabelle.png


As the display was in mm, I always assumed an error of 1 mm. For the error calculation of the counts, I used Poisson, i.e. ##\Delta count= \sqrt{n}## and for the errors of the counts per seconds I calculated as follows: ##\Delta## counts per second = ##\frac{\Delta count}{t}##


Now I have to do the following

Plot the position of the trolley (error discussion!) against the measured coincidence count rate graphically (with x-y errors). Fit the peak with a Gaussian curve (with x-y errors) and determine the FWHM. How does this result serve as an error for further measurements?

For the plots I used Origin and for the plot of the counts per second plus the error in x and y I had no problem and got the following:




Bildschirmfoto 2024-06-24 um 20.25.41.png

Unfortunately, I'm not sure if I did the plot regarding the peak with the Gauss curve correctly and that I calculated the FWHM correctly, for FWHM I have used the formula ##FWHM=2 \sqrt{2 \ln{2}} \sigma##, where ##\sigma=1.4215## which means that ##FWHM=3.35##. But how do I calculate the error of the FWHM?

Here is the plot

Bildschirmfoto 2024-06-24 um 20.34.50.png
 
Physics news on Phys.org
Let me begin by saying that I believe this experiment was meant to determine a point response function and thus the spatial resolution of your scanner assuming you used a point source. It would also seem that there were a substantial number of accidental counts meaning that the distribution was not a pure Gaussian but a Gaussian sitting on a background of some sort. I think the FWHM is significantly correlated with the accidental count background. I would try to estimate the form of the background and include it in the fit at least to see its effect on the value of σ. If you used a nonlinear fitting routine it should estimate the uncertainty in σ of the Gaussian from which you can determine the FWHM uncertainly.
 
  • Like
  • Informative
Likes DeBangis21, Lambda96 and berkeman
Thank you very much for your help 👍

How exactly can I estimate the background with the help of the measured data?
 
My approach is to start with the simplest functional form that makes sense Usually a straight line. bg = ax +b and see if that gives a reasonable χ2. If the χ2 is still unreasonable add a cx2 term and repeat. Don't try to overfit it. Backgrounds usually are structureless, with no peaks or fissures that might have too much effect unless you have a valid reason to use a more complex form. You can look at residuals to see where your model is failing. It might provide some guidance as to what to use.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top