- #1
Math100
- 783
- 220
- Homework Statement
- Establish the following statement:
Every integer of the form n^4+4, with n>1, is composite.
- Relevant Equations
- None.
Proof: Suppose a=n^4+4 for some a##\in\mathbb{Z}## such that n>1.
Then we have a=n^4+4=(n^2-2n+2)(n^2+2n+2).
Note that n^2-2n+2>1 and n^2+2n+2>1 for n>1.
Therefore, every integer of the form n^4+4, with n>1, is composite.
Then we have a=n^4+4=(n^2-2n+2)(n^2+2n+2).
Note that n^2-2n+2>1 and n^2+2n+2>1 for n>1.
Therefore, every integer of the form n^4+4, with n>1, is composite.