Abs Continuous Function w/ Unbounded Derivative on [a,b]

Click For Summary
An example of an absolutely continuous function on the interval [-1,1] with an unbounded derivative is defined as f(x) = x^2 sin(1/|x|^3) for x ≠ 0 and f(0) = 0. The derivative f'(x) is calculated and shown to be unbounded, yet integrable over the interval. The discussion highlights the importance of demonstrating that the integral of the absolute value of the derivative is finite to establish Lebesgue integrability. It is noted that while bounded functions imply equivalence between Riemann and Lebesgue integrals, this can also apply to unbounded functions if the Riemann integral is finite. The conversation concludes with a clarification on integrating unbounded functions and their properties.
glacier302
Messages
34
Reaction score
0
What is an example of an absolutely continuous function on [a,b] whose derivative is unbounded?

I know that the function f: [-1,1] defined by f(x) = x^2sin(1/x^2) for x ≠ 0, f(0) = 0 is continuous and its derivative f'(x) = 2xsin(1/x^2)-2/xcos(1/x^2) for x ≠ 0, f'(0) = 0 is unbounded on [-1,1]. But this function isn't absolutely continuous...

Any help would be much appreciated : )
 
Physics news on Phys.org


We can construct another example along the same lines. Consider the following:

f(x)=\begin{cases} x^2 \sin (|x|^{-3/2}) & \text{if }x \neq 0 \\ 0 & \text{if } x=0 \end{cases}

Computing the derivative yields:

f'(x) = \begin{cases} 2x \sin (|x|^{-3/2}) - \frac{3}{2} \operatorname{sgn}(x) |x|^{-1/2} \cos(|x|^{-3/2}) & \text{if } x \neq 0 \\ 0 & \text{if } x=0 \end{cases}

Since the derivative is integrable on [-1, 1], f is absolutely continuous on that interval.
 


Thank you for your help. One question: How I do know that the derivative of that function is integrable? If f' were bounded, then the fact that it is only discontinuous at x = 0 would make f' Reimann integrable, and Reimann integrability implies Lebesgue integrability for bounded functions. But in this case, f' is not bounded, so how do I show that it is Lebesgue integrable?
 


f' is obviously measurable, so you only have to show that the integral of the absolute value is finite. But we have:

\begin{align}\int_{-1}^{1} |f'(x)| \ dx & \leq \int_{-1}^{1} 2|x| |\sin(|x|^{-3/2})| + \frac{3}{2}|x|^{-1/2} |\cos(|x|^{-3/2})| \ dx \\ &\leq \int_{-1}^{1} 2 + \frac{3}{2} |x|^{-1/2} \ dx \\ & = 4 + \frac{3}{2} \int_{-1}^{1} |x|^{-1/2}\ dx \\ & = 4 + 3 \int_{0}^{1} x^{-1/2} dx \\ & = 4 + 6 \sqrt{x} \Big\vert_{0}^{1}\\ & = 10 < \infty \end{align}
 


Aha. Thank you! I knew that if a bounded function is Reimann integrable then the Reimann integral and the Lebesgue integral of the function are equal. However, I always forget that this can be extended to unbounded functions as long as the Reimann integral is finite.

Thanks again!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K