Exhibit Function f Using Weierstrass Product Thm

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
SUMMARY

The discussion focuses on using the Weierstrass Product Theorem to construct a function \( f \) that has poles of order \( n \) at each positive integer \( n \) while remaining analytic and nonzero elsewhere in the complex plane. The sequence \( z_n \) is defined as \( 1, 2, 2, 3, 3, 3, \ldots \), and the Weierstrass product is expressed as \( \prod\limits_{n = 1}^{\infty}\left(1-\frac{z}{z_n}\right)^{-1}e^{-P\left(z/z_n\right)} \). The discussion includes simplifications of the product and provides insights into the convergence and behavior of the function.

PREREQUISITES
  • Understanding of the Weierstrass Product Theorem
  • Familiarity with complex analysis concepts, particularly analytic functions
  • Knowledge of infinite products and their convergence
  • Basic understanding of sequences and series in mathematics
NEXT STEPS
  • Study the properties of the Weierstrass Product Theorem in detail
  • Explore analytic functions and their applications in complex analysis
  • Investigate convergence criteria for infinite products
  • Learn about the construction and behavior of sequences in mathematical analysis
USEFUL FOR

Mathematicians, particularly those specializing in complex analysis, students studying advanced calculus, and researchers interested in the properties of analytic functions and infinite products.

Dustinsfl
Messages
2,217
Reaction score
5
Use the Weierstrass Product Theorem to exhibit a function $f$ such that each positive integer $n$, $f$ has a pole of order $n$, and $f$ is analytic and nonzero at every other complex number.

So the solution goes as
Let $z_n$ be the nth term in the sequence $1,2,2,3,3,3,\ldots$.

Note that:
$$
\underbrace{\sum_{n=1}^{\infty}\frac{1}{|z_n|^3}}_{\text{Why to the 3rd power?}} = \underbrace{\sum_{n=1}^{\infty}\frac{n}{n^3}}_{ \text {Why is this equality true?}}
$$
 
Physics news on Phys.org
Why is $k_n$ 3 here?

The Weierstrass Product is $\prod\limits_{n = 1}^{\infty}\left(1-\frac{z}{z_n}\right)^{-1}e^{-P\left(z/z_n\right)}$.

So that leaves us with $\displaystyle\prod\limits_{n = 1}^{\infty}\left(1-\frac{z}{z_n}\right)^{-1}e^{-P\left[\frac{z}{z_n}+\left(\frac{z}{z_n}\right)^2\right]}$

I was told that the above product can be simplified. Like this?

By expanding the product, we have
$$
\left(1 - z\right)^{-1}e^{\left[-z + \frac{z^2}{2}\right]}\left(1 - \frac{z}{2}\right)^{-2}e^{\left[-\frac{z}{2} + \frac{z^2}{4}\right]}\left(1 - \frac{z}{3}\right)^{-3}e^{\left[-\frac{z}{3} + \frac{z^2}{6}\right]}\cdots\left(1 - \frac{z}{n}\right)^{-n}e^{\left[-\frac{z}{n} + \frac{z^2}{2^n}\right]}\cdots
$$
So we have that
$$
\prod_{n = 1}^{\infty}\left(1 - \frac{z}{z_n}\right)^{-1}e^{-\left[\frac{z}{z_n} + \left(\frac{z}{z_n}\right)^2/2\right]} =
\prod_{n = 1}^{\infty}\left(1 - \frac{z}{n}\right)^{-n}\exp\left[{-\frac{z}{n} + \frac{z^2}{2n}}\right].
$$
 
Last edited:

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K