I Existence and Uniqueness of Inverses

jolly_math
Messages
51
Reaction score
5
Existence: Ax = b has at least 1 solution x for every b if and only if the columns span Rm. I don't understand why then A has a right inverse C such that AC = I, and why this is only possible if m≤n.

Uniqueness: Ax = b has at most 1 solution x for every b if and only if the columns are linearly independent. I don't understand why then A has a n x m left inverse B such that BA = I, and why this is only possible if m≥n.

Could anyone explain the logic behind this? Thank you.
 
Physics news on Phys.org
Let's start with uniqueness. Suppose A has two columns that are linearly dependent. Can you find x that's not equal to 0 with Ax=0? Hint: it only has two nonzero elements
 
Office_Shredder said:
Let's start with uniqueness. Suppose A has two columns that are linearly dependent. Can you find x that's not equal to 0 with Ax=0? Hint: it only has two nonzero elements
No. A would be a column vector, and only x=0 would work. Why does this lead to the left inverse B such that BA = I, and why it is only possible if m≥n?

Thank you.
 
jolly_math said:
No. A would be a column vector

It's not. You might have misread my question, give it another look :)
 
I'm not sure what the answer is, could you explain the reasoning? Thank you.
 
Can you write out a 2x2 matrix which has two columns that are linearly dependent?
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
33
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
450
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
680
Replies
34
Views
3K