I Existence and Uniqueness of Inverses

jolly_math
Messages
51
Reaction score
5
Existence: Ax = b has at least 1 solution x for every b if and only if the columns span Rm. I don't understand why then A has a right inverse C such that AC = I, and why this is only possible if m≤n.

Uniqueness: Ax = b has at most 1 solution x for every b if and only if the columns are linearly independent. I don't understand why then A has a n x m left inverse B such that BA = I, and why this is only possible if m≥n.

Could anyone explain the logic behind this? Thank you.
 
Physics news on Phys.org
Let's start with uniqueness. Suppose A has two columns that are linearly dependent. Can you find x that's not equal to 0 with Ax=0? Hint: it only has two nonzero elements
 
Office_Shredder said:
Let's start with uniqueness. Suppose A has two columns that are linearly dependent. Can you find x that's not equal to 0 with Ax=0? Hint: it only has two nonzero elements
No. A would be a column vector, and only x=0 would work. Why does this lead to the left inverse B such that BA = I, and why it is only possible if m≥n?

Thank you.
 
jolly_math said:
No. A would be a column vector

It's not. You might have misread my question, give it another look :)
 
I'm not sure what the answer is, could you explain the reasoning? Thank you.
 
Can you write out a 2x2 matrix which has two columns that are linearly dependent?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top