Existence and uniqueness of solution

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Existence Uniqueness
Click For Summary
SUMMARY

The forum discussion centers on the initial value problem defined by the differential equation $$y'(t)=1/f(t, y(t))$$ with the initial condition $$y(t_0)=y_0$$, where the function $f:\mathbb{R}^2\rightarrow (0,\infty)$ is continuous and continuously differentiable. Participants confirm that the existence theorem guarantees at least one solution $\phi(t)$ in the interval $(t_0-h, t_0+h)$, provided $\frac{1}{f}$ is continuous and bounded. Additionally, the uniqueness of the solution is established using the Lipschitz condition, as $f$ is positive and continuously differentiable, ensuring that $\frac{1}{f}$ is Lipschitz continuous.

PREREQUISITES
  • Understanding of initial value problems in differential equations
  • Familiarity with the Picard–Lindelöf theorem
  • Knowledge of Lipschitz continuity and its implications
  • Basic concepts of continuity and differentiability in real analysis
NEXT STEPS
  • Study the Picard–Lindelöf theorem in detail
  • Learn about Lipschitz continuity and its applications in differential equations
  • Explore the existence and uniqueness theorems for initial value problems
  • Investigate the properties of continuous and differentiable functions in $\mathbb{R}^2$
USEFUL FOR

Mathematicians, students studying differential equations, and anyone interested in the theoretical foundations of solution existence and uniqueness in initial value problems.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the initital value problem $$\begin{cases}y'(t)=1/f(t, y(t)) \\ y(t_0)=y_0\end{cases} \ \ \ \ \ (1)$$ where the function $f:\mathbb{R}^2\rightarrow (0,\infty)$ is continuous in $\mathbb{R}^2$ and continuously differentiable as for $y$ in a domain that contains the point $(t_0, y_0)$.

Show that there exists $h>0$ such that the following two conditions are satisfied:
  • The problem (1) has a solution $\phi=\phi(t)$ that is defined at least for each $t\in (t_0-h, t_0+h)$.
  • In the interval $(t_0-h, t_0+h)$ there is no other solution of the problem (1). (i.e. if a function $\psi$ is a solution of the problem (1), then $\psi (t)=\phi (t)$, if $t\in (t_0-h, t_0+h)$)
For the first point we use the existence theorem, or not?

We have that $f$ is continuous, then $\frac{1}{f}$ is also continuous, since it doesn't get the value $0$. Is this correct?

We consider a region $R=\left \{(t,y) : |t-t_0|\leq a, \ |y-y_0|\leq b\right \}$ with $a,b>0$.

Do we have to show that $\frac{1}{f}$ is bounded in $R$ ?

Because then the IVP (1) would have at least one solution $\phi = \phi (t)$ defined in the interval $|t − t_0| \leq h$ where $h=\min \left \{a, \frac{b}{K}\right \}$, where $K$ is the maximum value of $\frac{1}{f}$ in $R$, or not?

(Wondering) For the second time we use the uniqueness theorem, or not?

Do we have to use for that the Lipschitz condition?

We have that $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |=\left |\frac{\frac{f(t_2)-f(t_1)}{f(t_1)f(t_2)}}{t_1-t_2}\right |=\left |\frac{f(t_2)-f(t_1)}{(t_1-t_2)f(t_1)f(t_2)}\right |=\frac{|f(t_2)-f(t_1)|}{|t_1-t_2||f(t_1)||f(t_2)|}$$ Since $f$ is continuous we get that $|f(t_2)-f(t_1)|\leq C|t_2-t_1|\Rightarrow \frac{|f(t_2)-f(t_1)|}{|t_2-t_1|}\leq C$. So we get $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |\leq C\cdot \frac{1}{|f(t_1)||f(t_2)|}$$ Is everything correct so far? How could we continue?

(Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

We have the initital value problem $$\begin{cases}y'(t)=1/f(t, y(t)) \\ y(t_0)=y_0\end{cases} \ \ \ \ \ (1)$$ where the function $f:\mathbb{R}^2\rightarrow (0,\infty)$ is continuous in $\mathbb{R}^2$ and continuously differentiable as for $y$ in a domain that contains the point $(t_0, y_0)$.

Show that there exists $h>0$ such that the following two conditions are satisfied:
  • The problem (1) has a solution $\phi=\phi(t)$ that is defined at least for each $t\in (t_0-h, t_0+h)$.
  • In the interval $(t_0-h, t_0+h)$ there is no other solution of the problem (1). (i.e. if a function $\psi$ is a solution of the problem (1), then $\psi (t)=\phi (t)$, if $t\in (t_0-h, t_0+h)$)
For the first point we use the existence theorem, or not?

We have that $f$ is continuous, then $\frac{1}{f}$ is also continuous, since it doesn't get the value $0$. Is this correct?

We consider a region $R=\left \{(t,y) : |t-t_0|\leq a, \ |y-y_0|\leq b\right \}$ with $a,b>0$.

Do we have to show that $\frac{1}{f}$ is bounded in $R$ ?

Because then the IVP (1) would have at least one solution $\phi = \phi (t)$ defined in the interval $|t − t_0| \leq h$ where $h=\min \left \{a, \frac{b}{K}\right \}$, where $K$ is the maximum value of $\frac{1}{f}$ in $R$, or not?

(Wondering) For the second time we use the uniqueness theorem, or not?

Do we have to use for that the Lipschitz condition?

We have that $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |=\left |\frac{\frac{f(t_2)-f(t_1)}{f(t_1)f(t_2)}}{t_1-t_2}\right |=\left |\frac{f(t_2)-f(t_1)}{(t_1-t_2)f(t_1)f(t_2)}\right |=\frac{|f(t_2)-f(t_1)|}{|t_1-t_2||f(t_1)||f(t_2)|}$$ Since $f$ is continuous we get that $|f(t_2)-f(t_1)|\leq C|t_2-t_1|\Rightarrow \frac{|f(t_2)-f(t_1)|}{|t_2-t_1|}\leq C$. So we get $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |\leq C\cdot \frac{1}{|f(t_1)||f(t_2)|}$$ Is everything correct so far? How could we continue?

(Wondering)

Hey mathmari!

The Picard–Lindelöf theorem states:
Consider the initial value problem
$$y'(t)=f(t,y(t)),\qquad y(t_0)=y_0$$
Suppose  f  is uniformly Lipschitz continuous in y (meaning the Lipschitz constant can be taken independent of t) and continuous in t. Then, for some value ε > 0, there exists a unique solution y(t) to the initial value problem on the interval $[t_{0}-\varepsilon ,t_{0}+\varepsilon ]$.


So if we can satisfy those conditions we have the proof for both bullet points don't we? (Wondering)

Since the $f$ of the problem statement is continuously differentiable, it follows that $\frac 1f$ is as well on a sufficiently small interval (inverse function theorem), doesn't it? (Wondering)

And if $\frac 1 f$ is differentiable on a closed interval, it's Lipschitz continuous, isn't it? (Wondering)
 
mathmari said:
Do we have to use for that the Lipschitz condition?

We have that $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |=\left |\frac{\frac{f(t_2)-f(t_1)}{f(t_1)f(t_2)}}{t_1-t_2}\right |=\left |\frac{f(t_2)-f(t_1)}{(t_1-t_2)f(t_1)f(t_2)}\right |=\frac{|f(t_2)-f(t_1)|}{|t_1-t_2||f(t_1)||f(t_2)|}$$ Since $f$ is continuous we get that $|f(t_2)-f(t_1)|\leq C|t_2-t_1|\Rightarrow \frac{|f(t_2)-f(t_1)|}{|t_2-t_1|}\leq C$. So we get $$\left |\frac{\frac{1}{f(t_1)}-\frac{1}{f(t_2)}}{t_1-t_2}\right |\leq C\cdot \frac{1}{|f(t_1)||f(t_2)|}$$ Is everything correct so far? How could we continue?

Don't we already have what we need for Lipschitz continuity?
$f$ is known to be a positive function, so $f(t_1)$ is greater than some positive value isn't it? (Wondering)
 
mathmari said:
Hey! :o

We have the initital value problem $$\begin{cases}y'(t)=1/f(t, y(t)) \\ y(t_0)=y_0\end{cases} \ \ \ \ \ (1)$$ where the function $f:\mathbb{R}^2\rightarrow (0,\infty)$ is continuous in $\mathbb{R}^2$ and continuously differentiable as for $y$ in a domain that contains the point $(t_0, y_0)$.

Show that there exists $h>0$ such that the following two conditions are satisfied:
  • The problem (1) has a solution $\phi=\phi(t)$ that is defined at least for each $t\in (t_0-h, t_0+h)$.
  • In the interval $(t_0-h, t_0+h)$ there is no other solution of the problem (1). (i.e. if a function $\psi$ is a solution of the problem (1), then $\psi (t)=\phi (t)$, if $t\in (t_0-h, t_0+h)$)
For the first point we use the existence theorem, or not?

We have that $f$ is continuous, then $\frac{1}{f}$ is also continuous, since it doesn't get the value $0$. Is this correct?
Where does it say that f(x) is not 0 on this interval?
 
Country Boy said:
Where does it say that f(x) is not 0 on this interval?

$f:\mathbb R^2→(0,∞)$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K