Existence of a Basis of a Vector Space

Click For Summary
SUMMARY

The discussion focuses on proving that the set of polynomials defined as $f_j(x) = \prod_{i=1,i \ne j}^n(x-a_i)$ for $j = 1,..., n$ forms a basis for the vector space of all polynomials of degree ≤ n - 1 over a field F with at least n distinct elements. The proof establishes linear independence of the set $\{f_1, \dots, f_n\}$, confirming that it spans the space. Additionally, it demonstrates the existence and uniqueness of a polynomial $g(x)$ of degree ≤ n - 1 that interpolates given values at points $a_i$ in F.

PREREQUISITES
  • Understanding of polynomial functions and their degrees.
  • Knowledge of linear independence in vector spaces.
  • Familiarity with the concept of a basis in linear algebra.
  • Experience with interpolation methods in polynomial spaces.
NEXT STEPS
  • Study the properties of polynomial interpolation, specifically Lagrange interpolation.
  • Learn about the concept of vector spaces and bases in linear algebra.
  • Explore the implications of linear independence in polynomial sets.
  • Investigate the role of distinct roots in polynomial factorization and their impact on linear independence.
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in polynomial theory and interpolation methods will benefit from this discussion.

toni07
Messages
24
Reaction score
0
Let n be a positive integer, and for each $j = 1,..., n$ define the polynomial $f_j(x)$ by f_j(x) = $\prod_{i=1,i \ne j}^n(x-a_i)$

The factor $x−a_j$ is omitted, so $f_j$ has degree n-1

a) Prove that the set $f_1(x),...,f_n(x)$ is a basis of the vector space of all polynomials of degree ≤ n - 1 in x with coefficients in F.

b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F.

I don't know how to go about this question. Any help would be appreciated.
 
Physics news on Phys.org
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Since the set $\{f_1,\dots,f_n\}$ has $n$ elements, and $\text{dim}(P_{n-1}) = n$, it suffices to prove this set is linearly independent to show it is a basis.

So suppose we have $c_1,\dots,c_n \in F$ with:

$g = c_1f_1 + \cdots + c_nf_n = 0$ (the 0-polynomial).

Since for ALL $a \in F$, $g(a) = 0$, in particular, we must have $g(a_1) = 0$.

Now $a_1$ is a root of $f_2,\dots,f_n$, so:

$0 = g(a_1) = c_1f_1(a_1) + c_2f_2(a_2) + \cdots + c_nf_n(a_n)$

$= c_1f_1(a_1) + 0 + \cdots + 0 = c_1f(a_1)$.

Since the $a_i$ are distinct, we have that $f(a_1)$ is the product of $n-1$ non-zero elements of $F$, and thus is non-zero. Hence it must be the case that $c_1 = 0$.

By similarly considering $g(a_i)$ for each $i$, we see that all the $c_i = 0$, which establishes linear independence of the $f_i$.

Something is missing from your statement of part b)...
 
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Deveno said:
Since the set $\{f_1,\dots,f_n\}$ has $n$ elements, and $\text{dim}(P_{n-1}) = n$, it suffices to prove this set is linearly independent to show it is a basis.

So suppose we have $c_1,\dots,c_n \in F$ with:

$g = c_1f_1 + \cdots + c_nf_n = 0$ (the 0-polynomial).

Since for ALL $a \in F$, $g(a) = 0$, in particular, we must have $g(a_1) = 0$.

Now $a_1$ is a root of $f_2,\dots,f_n$, so:

$0 = g(a_1) = c_1f_1(a_1) + c_2f_2(a_2) + \cdots + c_nf_n(a_n)$

$= c_1f_1(a_1) + 0 + \cdots + 0 = c_1f(a_1)$.

Since the $a_i$ are distinct, we have that $f(a_1)$ is the product of $n-1$ non-zero elements of $F$, and thus is non-zero. Hence it must be the case that $c_1 = 0$.

By similarly considering $g(a_i)$ for each $i$, we see that all the $c_i = 0$, which establishes linear independence of the $f_i$.

Something is missing from your statement of part b)...

Sorry, I didn't realize I omitted the last part.
b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F such that $g(a_i) = b_i$ for i = $1,..., n$ .
 
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Suppose the $f_i$ are as in part (a).

We know that $f_i(a_i) \neq 0$, so because we are in a field $f_i(a_i)^{-1}$ exists.

Define:

$\displaystyle g(x) = \sum_{j = 1}^n \frac{b_j}{f_i(a_j)}f_j(x)$

Then $\displaystyle g(a_i) = \frac{b_i}{f_i(a_i)}f_i(a_i) = b_i$

(all the non-$i$ terms are 0).

This shows existence...can you show uniqueness?

(hint: what does being a basis mean in terms of the coefficients of the $f_i$?)
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K