MHB Existence of Laplace transform

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the following

Suppose that $f$ is piecewise continuous on $$[0,\infty) $$ and of exponential order $c$ then

$$\int^\infty_0 e^{-st} f(t)\, dt $$​

is analytic in the right half-plane for $$\mathrm{Re}(s)>c$$
 
Mathematics news on Phys.org
If $f(t)$ is of exponential order $c$, then there exists a real constant $c$ and positive constants $M$ and $T$ such that $|f(t)| \le M e^{c t}$ when $t > T$.

Then

$$|F(s)| = \Big| \int_{0}^{\infty} f(t) e^{-st} \ dt \Big| \le \int_{0}^{\infty} |f(t) e^{-st}| \ dt = \int_{0}^{T} |f(t) e^{-st} | \ dt + \int_{T}^{\infty} |f(t)e^{-st}| \ dt$$

$$ \le \int_{0}^{T} |f(t) e^{-st} | \ dt + M \int_{T}^{\infty} e^{ct} e^{-\text{Re}(s) t} \ dt $$

$$ = \int_{0}^{T} |f(t) e^{-st} | \ dt + M \int_{T}^{\infty} e^{[c-\text{Re}(s)]t} \ dt$$The first integral converges for all values of $s$ since $f(t)$ is continuous.

And the second integral converges if $\text{Re} (s) > c $.

So $F(s)$ is absolutely convergent for $\text{Re}(s) >c$, and is thus complex differentiable (i.e., analytic) for $\text{Re}(s) > c$.
 
Last edited:
ZaidAlyafey said:
Prove the following

Suppose that $f$ is piecewise continuous on $$[0,\infty) $$ and of exponential order $c$ then

$$\int^\infty_0 e^{-st} f(t)\, dt $$​

is analytic in the right half-plane for $$\mathrm{Re}(s)>c$$

A function f(t) is said to be of 'exponential order c' if for any M>0 exists a T>0 for which for all t>T is $\displaystyle |f(t)| \le M\ e^{c\ t}$. An f(t) of exponential order c admits Laplace Transform...

$\displaystyle \mathcal{L}\ \{f(t)\} = F(s) = \int_{0}^{\infty} f(t)\ e^{- s\ t}\ dt\ (1)$

... and the integral in (1) converges if $\text{Re}\ (s) > c$. Now applying the Inverse Laplace Transform formula to F(s) You have to obtain f(t) as follows...

$\displaystyle f(t) = \frac{1}{2\ \pi\ i}\ \int_{\gamma - i\ \infty}^{\gamma + i\ \infty} F(s)\ e^{s\ t}\ ds\ (2)$

... where $\gamma$ has to be $\ge c$ and on the right of all singularities of F(s) and that means that F(s) is analytic for all s for which is $\displaystyle \text{Re}\ (s) > c$...
Kind regards

$\chi$ $\sigma$
 
Last edited by a moderator:
I corrected a significant mistake in my proof.

I originally said that $|e^{-st}| = e^{-st}$.

That's obviously not true if $s$ is complex.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top