Expanding manifold with constant boundary

Click For Summary
SUMMARY

The discussion centers on the mathematical properties of manifolds with boundaries, particularly in relation to metrics and their behavior as they approach these boundaries. Participants explore the implications of a stationary boundary in an expanding universe, likening it to the behavior of soap bubbles. The conversation also delves into the AdS/CFT correspondence, emphasizing the relationship between anti-de Sitter space and conformal field theory, and how boundary conditions can influence the underlying physics. Key questions include the nature of metrics at boundaries and the potential for singularities.

PREREQUISITES
  • Understanding of differential geometry and manifolds
  • Familiarity with General Relativity (GR) concepts
  • Knowledge of Conformal Field Theory (CFT) and its relationship to AdS space
  • Basic grasp of quantum field theory and path integrals
NEXT STEPS
  • Research the mathematical properties of metrics on manifolds with boundaries
  • Explore the implications of the AdS/CFT correspondence in theoretical physics
  • Study the holographic principle and its applications in quantum gravity
  • Investigate the role of boundary conditions in quantum field theories
USEFUL FOR

The discussion is beneficial for theoretical physicists, mathematicians specializing in geometry, and researchers interested in the intersections of quantum mechanics and general relativity.

Mike2
Messages
1,312
Reaction score
0
OK. Suppose you have a surface with a closed curve as a boundary. Then suppose that surface grows like a soap bubble but the boundary is stationary like the orifice through which air passes to make the bubble grow. It would seem that the 2D surface grows in both dimensions in the middle of the bubble, but the buble is not growing in at least one dimension along the boundary. What would be the equation for the metric both in the middle and on the boundary and as it approaches the boundary? :cool:

I wonder all this because in a different thread I explore the possibility that matter may be the boundary of an expanding universe. If so, I wonder what distinction there is in the metic of space as it approaches the boundary (particles). I'm kind of thinking that matter may be like a stationary boundary where the growing space must somehow bend and stretch to accommodate a fixed boundary. But the photon particles may be where the boundary grows right along with the surrounding space. I suppose you could have a boundary that has portions that expand and protions that are fixed. :rolleyes:
 
Physics news on Phys.org
I'd have to think that this would give a similar metric as used in GR. For if the surrounding space has expanded while the boundary surface of mass particles remains fixed, then you would have in effect a contraction of space near mass, just as in GR, right?
 
Now I wonder if a manifold with a boundary can have a metric just as easily as a manifold without boundary? If it can, then we can also have a metric on a manifold with a boundary that is distributed into smaller closed boundaries, right?

Thanks.
 
Mike2 said:
Now I wonder if a manifold with a boundary can have a metric just as easily as a manifold without boundary? If it can, then we can also have a metric on a manifold with a boundary that is distributed into smaller closed boundaries, right?

Thanks.
I suppose there would be a discontinuity at the boundary points themselves, right? But if there is an undefined metric beyond the boundary, how would that be expressed, by an infinity there, by a zero? Or would we simply specify that the metric is a function defined only for the manifold and not to be extended past the boundary?
 
Mike2 said:
I suppose there would be a discontinuity at the boundary points themselves, right? But if there is an undefined metric beyond the boundary, how would that be expressed, by an infinity there, by a zero? Or would we simply specify that the metric is a function defined only for the manifold and not to be extended past the boundary?


I don't see why a singularity is necessary. You could have nice boundary conditions at the boundary, with good limiting behavior of the derivatives. Note that the AdS/CFT research area is about a manifold with an important boundary.
 
selfAdjoint said:
I don't see why a singularity is necessary. You could have nice boundary conditions at the boundary, with good limiting behavior of the derivatives. Note that the AdS/CFT research area is about a manifold with an important boundary.
Thanks. Would you be kind enough to tell me a little more about this AdS/CFT research?

I'm stuck here at the top trying to justify my way to the bottom, and I'm not sure how to proceed. So I ask question about how GR or QM can be justified by first principles. It is probably irritating to the rest of you. But those kinds of questions are inevitable. Please be patient.
 
AdS means anti deSitter space, a Riemannian manifold with constant negative curvature. It is the boundary of a brane which supports Conformal Field Theory (CFT). The conjecture is that what happens on the boundary space completely determines the physics on the conformal brane. This is called the holographic conjecture because it is analogous to the way a 2-dimensional hologram cvan accurately capture 3-d shapes in the round. This is a very active research program.
 
selfAdjoint said:
AdS means anti deSitter space, a Riemannian manifold with constant negative curvature. It is the boundary of a brane which supports Conformal Field Theory (CFT). The conjecture is that what happens on the boundary space completely determines the physics on the conformal brane. This is called the holographic conjecture because it is analogous to the way a 2-dimensional hologram cvan accurately capture 3-d shapes in the round. This is a very active research program.
I read a brief intro to AdS-CFt correspondence at:
http://arxiv.org/PS_cache/hep-th/pdf/0003/0003120.pdf

Most of it over my head, of course. Did I read right that a Quantum Field theory in d+1 was not a quantum theory in the AdS of dimension d? Does a path integral in the d+1 of CFT translate to a different kind of path integral in the d dimensions in AdS? Or does the path integral of CFT not not translate to a path integral of AdS? Wouldn't it be great if we could justify QM in d+1 from a classical view in AdS of d dimensions? That's probably too much to hope for.
 
Last edited by a moderator:
This is a valuable paper that I wasn't aware of. Thanks for finding it. The paper is written in the mathematical physics tradition of C*-algebras acting on Hilbert space, where path integrals and other quantization techniques don't appear. It specifically proves that the conformal quantum field theory on d-dimensional Minkowski space determines the quantum field theory on d+1-dimensional space. So no, we don't get a free pass from classical theory to quantum theory.


(added after scanning the paper)

In fact he proves that the algebras of local observables are the same, so the quantum theories are identical, although the physical interpretation of the observables is radically different in the two spaces. An example, as he stresses, of the algebraic approach.
 
Last edited:

Similar threads

Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
10
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K