Expected value of variance of Hamiltonian in coherent states

AI Thread Summary
The discussion focuses on calculating the expected value of the variance of energy in coherent states, specifically addressing challenges with non-hermitian and non-commutative raising and lowering operators. Participants are unsure about their calculations of <H>² and <H²>, seeking clarification on the correct approach. A solution involving the commutation relation between the operators is proposed, and feedback indicates that the approach appears valid. The conversation emphasizes the importance of correctly applying operator algebra in quantum mechanics. Clear steps for resolving the calculations are requested to identify any potential mistakes.
graviton_10
Messages
5
Reaction score
1
Homework Statement
Find the variance of the energy in coherent state |ɑ>.
Relevant Equations
<ΔH> = <ɑ| HH |ɑ>
I am trying to find the expected value of the variance of energy in coherent states. But since the lowering and raising operators are non-hermitian and non-commutative, I am not sure if I am doing it right. I'm pretty sure my <H>2 calculation is right, but I'm not sure about <H2> calculation.

Here is my solution:
 

Attachments

  • WhatsApp Image 2023-02-25 at 3.08.54 AM.jpeg
    WhatsApp Image 2023-02-25 at 3.08.54 AM.jpeg
    53.6 KB · Views: 147
Last edited:
Physics news on Phys.org
1677335473758.png


Check the step circled in orange. ##a^\dagger## and ##a## don't commute.
 
  • Like
Likes vanhees71 and Terrakron
Yes, but how to do it the right way?
 
graviton_10 said:
Yes, but how to do it the right way?
Please post the steps for how you reduced ##\langle \alpha | (a^{\dagger} a)^2|\alpha \rangle## to ##|\alpha^*\alpha|^2 \langle \alpha | \alpha \rangle##. That way, we can help you see where you made a mistake.
 
So, I used the fact that the commutator of a and a dagger is 1. Does it look good now?
 

Attachments

  • WhatsApp Image 2023-02-27 at 2.51.33 PM.jpeg
    WhatsApp Image 2023-02-27 at 2.51.33 PM.jpeg
    56 KB · Views: 111
That looks good.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top