Expected value of variance of Hamiltonian in coherent states

Click For Summary
The discussion focuses on calculating the expected value of the variance of energy in coherent states, specifically addressing challenges with non-hermitian and non-commutative raising and lowering operators. Participants are unsure about their calculations of <H>² and <H²>, seeking clarification on the correct approach. A solution involving the commutation relation between the operators is proposed, and feedback indicates that the approach appears valid. The conversation emphasizes the importance of correctly applying operator algebra in quantum mechanics. Clear steps for resolving the calculations are requested to identify any potential mistakes.
graviton_10
Messages
5
Reaction score
1
Homework Statement
Find the variance of the energy in coherent state |ɑ>.
Relevant Equations
<ΔH> = <ɑ| HH |ɑ>
I am trying to find the expected value of the variance of energy in coherent states. But since the lowering and raising operators are non-hermitian and non-commutative, I am not sure if I am doing it right. I'm pretty sure my <H>2 calculation is right, but I'm not sure about <H2> calculation.

Here is my solution:
 

Attachments

  • WhatsApp Image 2023-02-25 at 3.08.54 AM.jpeg
    WhatsApp Image 2023-02-25 at 3.08.54 AM.jpeg
    53.6 KB · Views: 149
Last edited:
Physics news on Phys.org
1677335473758.png


Check the step circled in orange. ##a^\dagger## and ##a## don't commute.
 
  • Like
Likes vanhees71 and Terrakron
Yes, but how to do it the right way?
 
graviton_10 said:
Yes, but how to do it the right way?
Please post the steps for how you reduced ##\langle \alpha | (a^{\dagger} a)^2|\alpha \rangle## to ##|\alpha^*\alpha|^2 \langle \alpha | \alpha \rangle##. That way, we can help you see where you made a mistake.
 
So, I used the fact that the commutator of a and a dagger is 1. Does it look good now?
 

Attachments

  • WhatsApp Image 2023-02-27 at 2.51.33 PM.jpeg
    WhatsApp Image 2023-02-27 at 2.51.33 PM.jpeg
    56 KB · Views: 114
That looks good.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
824
Replies
14
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K