Explaining Integer Equations: Why -1 at the End?

  • Context: MHB 
  • Thread starter Thread starter psc109
  • Start date Start date
  • Tags Tags
    Concepts Integer
Click For Summary

Discussion Overview

The discussion revolves around understanding why an integer equation that starts with 1 has a -1 at the end, specifically in the context of the geometric series sum involving powers of 2. Participants seek conceptual explanations rather than numerical ones.

Discussion Character

  • Exploratory
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant questions the presence of -1 at the end of the equation, suggesting that since it starts with an odd number, the result should also be odd, leading to confusion about why -1 is used instead of subtracting the starting number if it were different.
  • Another participant provides a formula for the geometric sum and attempts to explain the derivation of the equation, but their example does not align with the original question regarding the -1.
  • Further replies express confusion about the relationship between the starting number and the -1 at the end, questioning the logic behind the subtraction.
  • A participant offers a detailed breakdown of the steps leading to the equation, explaining how the -1 arises from manipulating the series, but this explanation does not resolve the initial confusion about the conceptual reasoning behind the -1.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the conceptual reasoning behind the -1 at the end of the equation. There are multiple competing views and ongoing confusion regarding the relationship between the starting number and the final result.

Contextual Notes

Some participants express difficulty in understanding the mathematical language used, which may contribute to the lack of clarity in the discussion. The connection between the structure of the equation and the presence of -1 remains unresolved.

psc109
Messages
2
Reaction score
0
Can some one explain to my why an integer equation that starts with 1 has a -1 at the end of the equation.

example:

1 + 2 + 4 + 8 + 16 ... + 2 ^ N = 2 x ( 2 ^ N ) - 1

Conceptually where does the rule come from that there is a minus at the end of the equation.

It starts with an odd number so the answer must be an odd number and that's why -1 is subtracted at the end then how come if an equation started with -5 or -8 you would not subtract the -5 or -8 in the end?

I've seen numerical explanations but they confuse me, can it be explained with words?
 
Mathematics news on Phys.org
Re: Intiger Concepts

psc109 said:
Can some one explain to my why an integer equation that starts with 1 has a -1 at the end of the equation.

example:

1 + 2 + 4 + 8 + 16 ... + 2 ^ N = 2 x ( 2 ^ N ) - 1

Conceptually where does the rule come from that there is a minus at the end of the equation.

It starts with an odd number so the answer must be an odd number and that's why -1 is subtracted at the end then how come if an equation started with -5 or -8 you would not subtract the -5 or -8 in the end?

I've seen numerical explanations but they confuse me, can it be explained with words?

The general formula for a geometric sum is...

$\displaystyle S_{n} = \sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1-a}\ (1)$

Setting a=2 You obtain $S_{n} = 2^{\ n+1} - 1$...

Kind regards

$\chi$ $\sigma$
 
Re: Intiger Concepts

Thank you Chisigma, the example you gave does not start with one and does not have a negative 1 at the end.

Why is it there in the the example i was given? Why subtract 1 at the end when if say I started it 8 I would not subtract 8 at the end.
 
Re: Intiger Concepts

psc109 said:
Thank you Chisigma, the example you gave does not start with one and does not have a negative 1 at the end.

Why is it there in the the example i was given? Why subtract 1 at the end when if say I started it 8 I would not subtract 8 at the end.

I confess not to understand exactly Your question, expecially the words 'it start with 1 and ends with -1'... ewerywhere in Math we meet expressions like 'a = b' and no general connection exists between the 'head' of a and the 'tail' of b... may be however that my misundestanding depends from my poor knowledege of the english language (Emo)...

Kind regards $\chi$ $\sigma$
 
One way of looking at it is this: Let S= 1+ 2+ 2^2+ 2^3+ ... 2^n
Subtract 1 from both sides: S- 1= 2+ 2^2+ 2^3+ ...+ 2^n.

The "+1" on the right has become "-1" on left!

Now, factor a "2" on the right: S- 1= 2(1+ 2+ 2^2+ ...+ 2^{n-1})

That "1+ 2+ 2^2+ 2^{n-1} on the right is almost the "1+ 2+ 2^2+ ...+ 2^n" we had before. Make it that way by "adding and subtracting 2^n inside the parentheses:
S-1= 2(1+ 2+ 2^2+ ...+ 2^{n-1}+ 2^n- 2^n)= 2(S- 2^n)
S- 1= 2S- 2^{n+1}

Solve that for S by subtracting 2S from both sides and adding 1 to both sides:
-S= 1- 2^{n+1}

so S= 2^{n+1}- 1

That "-1" at the end is due to the "1" on the left in "S- 1" which is, itself, due to the fact that there was a "+1" on the right in the initial equation.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 55 ·
2
Replies
55
Views
6K
  • · Replies 105 ·
4
Replies
105
Views
9K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K