Explanation of minimum ionizing radiation

Click For Summary
Minimum ionizing radiation occurs when charged particles, traveling at ultrarelativistic speeds, experience a specific limit to their energy loss per distance traveled (dE/dx) in matter. This phenomenon is influenced by the particle's charge and velocity, with slow particles having higher interaction probabilities and fast particles losing energy more efficiently. The Bethe Bloch equation describes this continuous energy loss, which shows a minimum point due to competing effects of energy transfer at varying velocities. At very high energies, radiative processes like bremsstrahlung become significant, causing dE/dx to increase again. Understanding these dynamics is crucial for applications in particle physics and radiation therapy.
bcrowell
Staff Emeritus
Science Advisor
Insights Author
Messages
6,723
Reaction score
431
Can anyone provide, or point me to, an explanation of minimum ionizing radiation? My understanding is that in the limit of ultrarelativistic velocities, a charged particle stopping in matter has a dE/dx that approaches some limit. Is this correct, and if so, why does it happen? Is it basically because an electron in the stopping material sees a pulse in the E and B fields, and the duration of the pulse is just \Delta x/c? But doesn't the intensity of the fields depend on how close you are to c? (I'm imagining a Lorentz-transformed Coulomb field.) Am I right in thinking that dE/dx would depend only on the properties of the stopping material and on the particle's charge? I'd imagine it wouldn't depend on the particle's mass, since the particle is ultrarelativistic, so its momentum is basically E/c.

Thanks in advance!

-Ben
 
Physics news on Phys.org
Ionization depends on a particle's charge and velocity.

Slow particles have many chances to interact with an atom, so their ionization probability goes up. Fast particles have a lot of energy, so for the same fractional energy loss, more energy is lost. In between these two extremes lies a minimum.
 
The best discussions of the Bethe Bloch energy loss equation can be found at

1) The GEANT4 CERN website:See Chapter 9 on page 157 in

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf

2) The LBL Particle Data group website:

See Fig 27.1 and Eqn 27.3 in

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-passage-particles-matter.pdf

The Bethe Bloch equation relates to "continuous energy loss" of incident charged particles (excluding electrons) interacting with atomic electrons in the stopping material.

There are two other types of interactions that are related to nuclear collisions (much smaller cross sections)

1) radiative; pair production and bremsstrahlung. Scales as 1/ (incident particle mass)2 for specific incident energies.

2) inelastic nuclear interactions. Cross section ≈nuclear size.

See this page for radiation lengths, nuclear interaction lengths, etc in various materials.

http://pdg.lbl.gov/2009/reviews/rpp2009-rev-atomic-nuclear-prop.pdf

Bob S
 
Thanks, Vanadium 50 and Bob S, for the helpful posts!

So let's see if I have this right. I'm looking at the graph on p. 4 of the LBL particle group doc.

At very low energies, the velocity of the particle is comparable to the velocity of the atomic electrons. At higher energies, the atomic electrons basically feel an impulsive force from the fields of the particle. The time duration of this impulse falls off with velocity, leading to a reduction in the amount of energy transferred. The dE/dx keeps dropping with E for this reason, but at high enough energies, there is a countervailing effect that causes dE/dx to start rising again; is this because kinematically, the maximum energy transfer to a given electron is proportional to \gamma in the limit of large \gamma? At some point in here, these two trends cancel one another, and we reach a minimum. The region around this minimum is quite flat for a long time, so people refer to anything in this range as minimum-ionizing.

At even higher energies (TeV), radiative effects like Bremstrahlung take over, and dE/dx starts rising again dramatically.
 
A good derivation (the best I have seen) of the Bethe Bloch ionization energy loss equation is given in a book by David Ritson "Techniques of High Energy Physics" (Interscience 1961) pgs 4-24. Coulomb scattering off of nuclei is derived, then Coulomb scattering off of atomic electrons to derive the probability and energy distribution of the recoil electrons, which of course is the ionization energy loss. The log argument in dE/dx is ln[θmaxmin], where θmax and θmin are the max and min deflection angles of the incident particle. For a momentum transfer p, the energy loss is p2/2m.

The final ionization energy loss equation is

dE/dx = -2π(Nez2e4)/(β2mc2) [Ln(β2γ2mc2Tmax) - Ln(I2)]

Ritson also discusses delta rays, density effect, ionization loss fluctuations, and range fluctuations.

The small dE/dx dependence on the sign of the charge of the incident particle is called the Barkas effect, which is based on analysis of curved positive and negative pion tracks in emulsions placed in the 184" cyclotron at Berkeley. Negative pions had a slightly longer range and correspondingly lower dE/dx. See Barkas Birnbaum Smith Phys Rev 101 778 (1956)

Bob S
 

Similar threads

  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
Replies
17
Views
2K