Explanation of small angle approximation?

Click For Summary

Discussion Overview

The discussion revolves around the small angle approximation in trigonometry, particularly focusing on the behavior of sine and cosine functions as the angle approaches zero. Participants explore mathematical derivations, Taylor series expansions, and graphical interpretations of these approximations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants explain the small angle approximation through the truncation of Taylor series for sine and cosine functions, noting that as the angle approaches zero, the approximations improve.
  • One participant emphasizes that the derivatives of sine and cosine can be used to derive the approximations, suggesting that this method is straightforward.
  • Another participant discusses the relationship between sine, cosine, and tangent for small angles, indicating that when the angle is small, cosine can be approximated as one, leading to the approximation of tangent as sine.
  • There are multiple references to the graphical representation of sine and cosine functions, with some participants noting that the approximations appear accurate near zero.
  • One participant raises a question about the implications of intersections between sine and tangent functions, leading to clarifications about the conditions under which sine approximates tangent.
  • Another participant explains that for very small angles, higher-order terms in the Taylor series become negligible, reinforcing the approximation that sine is approximately equal to the angle itself.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical foundations of the small angle approximation but express differing views on the clarity and simplicity of deriving these approximations. Some participants challenge the ease of deriving Taylor series, while others provide supportive explanations.

Contextual Notes

Some participants note that the discussion relies on the understanding of Taylor series and derivatives, which may not be familiar to all readers. There is also an acknowledgment of the periodic nature of trigonometric functions, which influences the behavior of sine and tangent at specific points.

Who May Find This Useful

This discussion may be useful for students and enthusiasts of mathematics and physics who are interested in trigonometric functions, approximations, and their applications in various contexts.

ah4p
Messages
21
Reaction score
0
< Mentor Note -- The OP's question was in the thread title. They have been advised to please make more detailed and clear thread starters >

thanks
 
Last edited by a moderator:
Mathematics news on Phys.org
The most obvious way to explain these approximations is truncating the Taylor series about zero. If you haven't seen these, they're basically infinite series for the trig functions. In the case of sine and cosine, they are
$$\sin\theta = \sum_{n=0}^\infty \frac{(-1)^n \theta^{2n+1}}{(2n+1)!}\text{ and }\cos\theta = \sum_{n=0}^\infty \frac{(-1)^n \theta^{2n}}{(2n)!}$$
When \theta\approx 0, these approximations will get better and better for smaller numbers of terms. Where do they come from, you ask? Well, in many cases this is how mathematicians define sine and cosine. Otherwise it takes quite a bit of calculus to come up with these formulas, but you can check that they indeed work. Now, going back to \theta\approx 0, we write out the first term of sine and the second term of cosine (basically, we're taking terms with \theta^2 or lower exponents. We end up with, lo and behold
$$\sin\theta\approx\theta\text{ and }\cos\theta\approx 1-\frac{\theta^2}{2}.$$
Indeed, if you use a graphing program to graph this you get some very promising results around \theta = 0.

Capture1.PNG


Capture2.PNG


The first image plots sine in black and f(x)=x in red, the second image plots cosine in black and its approximation in red. Amazingly, the approximations don't look so bad!

Of course, there are always geometric explanations too, but this is the slightly more sophisticated way to view the approximations.
 
  • Like
Likes   Reactions: berkeman
Theage said:
Where do they come from, you ask? Well, in many cases this is how mathematicians define sine and cosine. Otherwise it takes quite a bit of calculus to come up with these formulas,

I wouldn't say so - taking the derivative of sin(x) and cos(x) repeatedly and plugging into Taylor's equation is simple enough for anyone who asks this question!

Rationalising why Taylor's theorem works is slightly harder...
 
Theage said:
The most obvious way to explain these approximations is truncating the Taylor series about zero. If you haven't seen these, they're basically infinite series for the trig functions. In the case of sine and cosine, they are
$$\sin\theta = \sum_{n=0}^\infty \frac{(-1)^n \theta^{2n+1}}{(2n+1)!}\text{ and }\cos\theta = \sum_{n=0}^\infty \frac{(-1)^n \theta^{2n}}{(2n)!}$$
When \theta\approx 0, these approximations will get better and better for smaller numbers of terms. Where do they come from, you ask? Well, in many cases this is how mathematicians define sine and cosine. Otherwise it takes quite a bit of calculus to come up with these formulas, but you can check that they indeed work. Now, going back to \theta\approx 0, we write out the first term of sine and the second term of cosine (basically, we're taking terms with \theta^2 or lower exponents. We end up with, lo and behold
$$\sin\theta\approx\theta\text{ and }\cos\theta\approx 1-\frac{\theta^2}{2}.$$
Indeed, if you use a graphing program to graph this you get some very promising results around \theta = 0.

View attachment 76762

View attachment 76763

The first image plots sine in black and f(x)=x in red, the second image plots cosine in black and its approximation in red. Amazingly, the approximations don't look so bad!

Of course, there are always geometric explanations too, but this is the slightly more sophisticated way to view the approximations.
thank you very much for that. I noticed when I tried to find the point of intersection of sinx and tanx graphically they were x = 0, pi, 2pi

how does this mean sinx = tanx ?? I thought it meant sinx only equals tan x when x is 0 pi or 2pi??
tah again
 
ah4p said:
how does this mean sinx = tanx ??
It doesn't, but when x is small, we have ##\cos x\approx1##, and therefore
$$\tan x=\frac{\sin x}{\cos x}\approx \frac{\sin x}{1}=\sin x.$$

Edit: I typed ##\cos x=1## above, but I meant ##\cos x\approx 1##. I fixed that after the reply below.
 
Last edited:
Fredrik said:
It doesn't, but when x is small, we have ##\cos x=1##, and therefore
$$\tan x=\frac{\sin x}{\cos x}\approx \frac{\sin x}{1}=\sin x.$$
ah thank you very much that makes sense :D
 
Recall the definition of the derivative:
$$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}.$$ This implies that when ##h## is small, we have
$$f'(x)\approx \frac{f(x+h)-f(x)}{h}$$ for all ##x##, and therefore
$$f(x+h)\approx f(x)+f'(x)h$$ for all ##x##. This implies that when ##h## is small, we have
$$f(h)\approx f(0)+f'(0)h.$$ This result tells us in particular that when ##x## is small, we have
$$\sin x\approx\sin 0+\sin'(0)x =0+\cos 0\cdot x=x,$$ and
$$\cos x\approx\cos 0+\cos'(0)x= 1-\sin 0\cdot x =1.$$
 
Fredrik said:
It doesn't, but when x is small, we have ##\cos x\approx1##, and therefore
$$\tan x=\frac{\sin x}{\cos x}\approx \frac{\sin x}{1}=\sin x.$$

Edit: I typed ##\cos x=1## above, but I meant ##\cos x\approx 1##. I fixed that after the reply below.
thank very much :D but why does that result in sin x = x
 
  • #10
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! + ...
cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! + ...

For x<1, x^n<x(<1) for all n>1. For very small x, by extension, x^n is even smaller for all n>1; so for x close to 0, x^3 and x^5 and further is extremely close to 0 and can be called 0. So, for x close to 0,

sin(x) = x
cos(x) = 1

approximately.

(So tan(x) = sin(x)/cos(x) = sin(x)/1 (using cos(x)=1) = x/1 (using sin(x)=x) = x approximately, for x close to 0)

These relationships are all exactly true for x=0 (just as they are approximately true for x close to 0) and equivalently for x=2pi*n where n is any integer, because the trigonometric functions are periodic over 2pi (because 2pi is 360 degrees and the functions are defined geometrically, sin(x+2pi*n)=sin(x) etc.).
 
  • #11
ah4p said:
thank very much :D but why does that result in sin x = x
It doesn't. I explained why ##\sin x\approx x## for small ##x## in post #8, i.e. the post I wrote just before you asked the question I'm quoting now. It was also explained three times in post #2 (use the link), and twice in post #3. Now it's also explained in post #10.
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
26
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K