B Explicit expression for ideal membership

aheight
Messages
318
Reaction score
108
TL;DR Summary
Construct an explicit expression for all elements in an ideal of Q[x]?
Derive an explicit expression for all ##f\in\langle q\rangle\subseteq \mathbb{Q}[x]##. I think it's doable and was wondering if there is a published formula?
 
Last edited:
Physics news on Phys.org
What is the definition of ##\left<q\right>##?
 
Office_Shredder said:
What is the definition of ##\left<q\right>##?
##\langle q \rangle## is the Ideal generated by the polynomial ##q(x)\in \mathbb{Q}[x]##.

$$
\langle q\rangle=\{q(x)h(x): h(x)\in \mathbb{Q}[x]\}.
$$

For example ##x^6-1\in \langle x-1\rangle##. And in this case, it's easy to derive an explicit expression for all ##a_0+a_1x+\cdots+a_n x^n\in\langle x-1\rangle## right? It's ##\{a_0+a_1 x+\cdots+a_nx^2\in \mathbb{Q}[x]:\sum a_i=0\}##. So I was wondering if there is a known formula for the general case:
$$
a_0+a_1x+\cdots+a_n x^n\in\langle b_0+b_1x+\cdots+ b_n x^k\rangle
$$
say for ##k<n## or maybe any ##k,n##. Not sure though.
 
Last edited:
That formula about the sum of coefficients is a slightly neat trick but unnecessary.

The polynomials in ##<b_kx^k+...+b_0>## are the ones of the form ##b_k a_n x^{k+n}+ (b_{k-1} a_n + b_k a_{n-1}) x^{k+n-1}+...##

If you're wondering given a polynomial how you can check if it's in the right form, that's also easy. Polynomial division is a straightforward algorithm that you can perform to see if your polynomial is dividing.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top