High School Explicit expression for ideal membership

Click For Summary
An explicit expression for all polynomials in the ideal generated by a polynomial q(x) in the rational polynomial ring can be derived. The ideal ⟨q⟩ consists of all polynomials of the form q(x)h(x), where h(x) is also a polynomial in Q[x]. A specific example demonstrates that for the ideal ⟨x-1⟩, the polynomials can be expressed as those whose coefficients sum to zero. The discussion seeks a general formula for polynomials in the ideal ⟨b0 + b1x + ... + bkx^k⟩, particularly when k is less than n. Polynomial division is suggested as a method to verify if a polynomial belongs to the desired ideal.
aheight
Messages
318
Reaction score
108
TL;DR
Construct an explicit expression for all elements in an ideal of Q[x]?
Derive an explicit expression for all ##f\in\langle q\rangle\subseteq \mathbb{Q}[x]##. I think it's doable and was wondering if there is a published formula?
 
Last edited:
Physics news on Phys.org
What is the definition of ##\left<q\right>##?
 
Office_Shredder said:
What is the definition of ##\left<q\right>##?
##\langle q \rangle## is the Ideal generated by the polynomial ##q(x)\in \mathbb{Q}[x]##.

$$
\langle q\rangle=\{q(x)h(x): h(x)\in \mathbb{Q}[x]\}.
$$

For example ##x^6-1\in \langle x-1\rangle##. And in this case, it's easy to derive an explicit expression for all ##a_0+a_1x+\cdots+a_n x^n\in\langle x-1\rangle## right? It's ##\{a_0+a_1 x+\cdots+a_nx^2\in \mathbb{Q}[x]:\sum a_i=0\}##. So I was wondering if there is a known formula for the general case:
$$
a_0+a_1x+\cdots+a_n x^n\in\langle b_0+b_1x+\cdots+ b_n x^k\rangle
$$
say for ##k<n## or maybe any ##k,n##. Not sure though.
 
Last edited:
That formula about the sum of coefficients is a slightly neat trick but unnecessary.

The polynomials in ##<b_kx^k+...+b_0>## are the ones of the form ##b_k a_n x^{k+n}+ (b_{k-1} a_n + b_k a_{n-1}) x^{k+n-1}+...##

If you're wondering given a polynomial how you can check if it's in the right form, that's also easy. Polynomial division is a straightforward algorithm that you can perform to see if your polynomial is dividing.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
435
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
12K
  • · Replies 2 ·
Replies
2
Views
1K