- #1
Petar Mali
- 290
- 0
[tex]\alpha=\left(\begin{array}{cccc}
\gamma& 0&0& -\beta\gamma\\
0&1& 0 & 0\\
0 & 0 & 1 & 0\\
-\beta\gamma & 0 & 0 & \gamma \end{array} \right)[/tex][tex]x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}[/tex]
[tex]\alpha[/tex] is Lorrentz transformation matrix. Can I see something more about it? . It's symmetric. That is important.
[tex]Tr(\alpha)=2\gamma +2[/tex]
Is this value of trace important for something?
We can also say for four vectors
[tex]A'^{\mu}=\frac{\partial x'^{\mu}}{\partial x^{\nu}}A^{\nu}[/tex]
using this relation and
[tex]x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}[/tex]
we get
[tex]A'^{\mu}=\alpha^{\mu}_{\nu}A^{\nu}[/tex]
So
[tex]A'^{1}=\alpha^{1}_{\nu}A^{\nu}=\alpha^{1}_{1}A^{1}+\alpha^{1}_{4}A^{4}=\gamma A^{1}-\beta\gamma A^4=\gamma(A^1-\beta A^4)[/tex]
[tex]A'^{2}=\alpha^{2}_{\nu}A^{\nu}=A^2[/tex]
[tex]A'^{3}=A^3[/tex]
[tex]A'^{4}=\alpha^{4}_{\nu}A^{\nu}=\alpha^{4}_{1}A^{1}+\alpha^{4}_{4}A^{4}=-\beta\gamma A^{1}+\gamma A^4=\gamma(A^4-\beta A^1)[/tex]
Look now in antisymmetric tensors
[tex]A^{\nu\mu}=-A^{\mu\nu}[/tex]
[tex]A'^{12}=\alpha^1_{\rho}\alpha^2_{\sigma}A^{\rho\sigma}[/tex]
Nonzero terms are terms in which [tex]\rho[/tex] takes values [tex]1,4[/tex] and [tex]\sigma[/tex] takes [tex]2[/tex].
I have a question for component
[tex]A'^{14}=\alpha^1_{\rho}\alpha^4_{\sigma}A^{\rho\sigma}=\alpha^1_{1}\alpha^4_{1}A^{11}+\alpha^1_{1}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{1}A^{41}=-\beta\gamma^2A^{11}+\gamma^2A^{14}-\beta^2\gamma^2A^{14}-\beta\gamma^2A^{44}[/tex]
Can I say if I look antisymmetric tensors [tex]A^{11}=A^{44}=0[/tex]?
Then I will get
[tex]A'^{14}=A^{14}[/tex]
Thanks for your answers!
\gamma& 0&0& -\beta\gamma\\
0&1& 0 & 0\\
0 & 0 & 1 & 0\\
-\beta\gamma & 0 & 0 & \gamma \end{array} \right)[/tex][tex]x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}[/tex]
[tex]\alpha[/tex] is Lorrentz transformation matrix. Can I see something more about it? . It's symmetric. That is important.
[tex]Tr(\alpha)=2\gamma +2[/tex]
Is this value of trace important for something?
We can also say for four vectors
[tex]A'^{\mu}=\frac{\partial x'^{\mu}}{\partial x^{\nu}}A^{\nu}[/tex]
using this relation and
[tex]x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}[/tex]
we get
[tex]A'^{\mu}=\alpha^{\mu}_{\nu}A^{\nu}[/tex]
So
[tex]A'^{1}=\alpha^{1}_{\nu}A^{\nu}=\alpha^{1}_{1}A^{1}+\alpha^{1}_{4}A^{4}=\gamma A^{1}-\beta\gamma A^4=\gamma(A^1-\beta A^4)[/tex]
[tex]A'^{2}=\alpha^{2}_{\nu}A^{\nu}=A^2[/tex]
[tex]A'^{3}=A^3[/tex]
[tex]A'^{4}=\alpha^{4}_{\nu}A^{\nu}=\alpha^{4}_{1}A^{1}+\alpha^{4}_{4}A^{4}=-\beta\gamma A^{1}+\gamma A^4=\gamma(A^4-\beta A^1)[/tex]
Look now in antisymmetric tensors
[tex]A^{\nu\mu}=-A^{\mu\nu}[/tex]
[tex]A'^{12}=\alpha^1_{\rho}\alpha^2_{\sigma}A^{\rho\sigma}[/tex]
Nonzero terms are terms in which [tex]\rho[/tex] takes values [tex]1,4[/tex] and [tex]\sigma[/tex] takes [tex]2[/tex].
I have a question for component
[tex]A'^{14}=\alpha^1_{\rho}\alpha^4_{\sigma}A^{\rho\sigma}=\alpha^1_{1}\alpha^4_{1}A^{11}+\alpha^1_{1}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{1}A^{41}=-\beta\gamma^2A^{11}+\gamma^2A^{14}-\beta^2\gamma^2A^{14}-\beta\gamma^2A^{44}[/tex]
Can I say if I look antisymmetric tensors [tex]A^{11}=A^{44}=0[/tex]?
Then I will get
[tex]A'^{14}=A^{14}[/tex]
Thanks for your answers!
Last edited: