MHB Exponential Func: Solving ln6=ln2+ln3

Click For Summary
The discussion focuses on justifying the equation ln6 = ln2 + ln3 by demonstrating that the exponential function is strictly increasing over the real numbers. This property ensures that the function is invertible, allowing for the simplification of logarithmic expressions. An example is provided with the function f(x) = x^2, which is not strictly increasing and illustrates how non-invertible functions can lead to incorrect conclusions. The importance of the exponential function's behavior is emphasized in validating the equality of logarithms. Understanding this concept is crucial for correctly manipulating logarithmic identities.
Perlita
Messages
6
Reaction score
0
Hello everyone,
I was solving this problem:
Justify that ln6= ln2+ln3

So: exp(ln2+ln3)=exp(ln2)*exp(ln3)= 2*3= 6 = exp(ln6)
Till here, my work was okay.
What I didn't understand is : why should we say that the exponential function is strictly increasing over R before being able to simplify the equation and get: ln2+ln3=ln6 ??

Thanks
 
Mathematics news on Phys.org
Perlita said:
Hello everyone,
I was solving this problem:
Justify that ln6= ln2+ln3

So: exp(ln2+ln3)=exp(ln2)*exp(ln3)= 2*3= 6 = exp(ln6)
Till here, my work was okay.
What I didn't understand is : why should we say that the exponential function is strictly increasing over R before being able to simplify the equation and get: ln2+ln3=ln6 ??

Thanks

Hey Perlita! :)

What you need is that the function is invertible.
And a strictly increasing function is invertible.

To illustrate how it can go wrong when the function is not invertible, consider for instance the function given by $f(x)=x^2$.
We have $(-2)^2 = 4 = 2^2$.
But that does not imply that $-2 = 2$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
27K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K