MHB Exponential Func: Solving ln6=ln2+ln3

Click For Summary
The discussion focuses on justifying the equation ln6 = ln2 + ln3 by demonstrating that the exponential function is strictly increasing over the real numbers. This property ensures that the function is invertible, allowing for the simplification of logarithmic expressions. An example is provided with the function f(x) = x^2, which is not strictly increasing and illustrates how non-invertible functions can lead to incorrect conclusions. The importance of the exponential function's behavior is emphasized in validating the equality of logarithms. Understanding this concept is crucial for correctly manipulating logarithmic identities.
Perlita
Messages
6
Reaction score
0
Hello everyone,
I was solving this problem:
Justify that ln6= ln2+ln3

So: exp(ln2+ln3)=exp(ln2)*exp(ln3)= 2*3= 6 = exp(ln6)
Till here, my work was okay.
What I didn't understand is : why should we say that the exponential function is strictly increasing over R before being able to simplify the equation and get: ln2+ln3=ln6 ??

Thanks
 
Mathematics news on Phys.org
Perlita said:
Hello everyone,
I was solving this problem:
Justify that ln6= ln2+ln3

So: exp(ln2+ln3)=exp(ln2)*exp(ln3)= 2*3= 6 = exp(ln6)
Till here, my work was okay.
What I didn't understand is : why should we say that the exponential function is strictly increasing over R before being able to simplify the equation and get: ln2+ln3=ln6 ??

Thanks

Hey Perlita! :)

What you need is that the function is invertible.
And a strictly increasing function is invertible.

To illustrate how it can go wrong when the function is not invertible, consider for instance the function given by $f(x)=x^2$.
We have $(-2)^2 = 4 = 2^2$.
But that does not imply that $-2 = 2$.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
27K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 4 ·
Replies
4
Views
2K