MHB Expressing a set as the difference between two sets.

Click For Summary
SUMMARY

The set union of intervals [a, b] and [c, d], where a < b < c < d, can be expressed as the difference of two sets: [a, d] \setminus (b, c). This formulation highlights that the union includes all numbers from the interval [a, d] except those in the open interval (b, c). The discussion emphasizes that the intervals [a, b] and [c, d] are disjoint, confirming that (b, c) is a non-null set that can be subtracted to achieve the desired union.

PREREQUISITES
  • Understanding of set theory concepts, specifically set union and set difference.
  • Familiarity with real number intervals and their properties.
  • Knowledge of compactified intervals and their significance in set representation.
  • Basic mathematical notation including symbols for union (∪) and set difference (∖).
NEXT STEPS
  • Study the properties of compactified intervals in set theory.
  • Learn about the representation of unions of bounded intervals in mathematical analysis.
  • Explore advanced set operations and their applications in real analysis.
  • Investigate the implications of disjoint intervals in set theory and their graphical representations.
USEFUL FOR

Mathematicians, students of mathematics, and anyone interested in advanced set theory concepts, particularly those involving real number intervals and their operations.

rayne1
Messages
32
Reaction score
0
Let a, b, c, and d be real numbers with a < b < c < d. Express the set [a, b]U[c, d] as the difference of two sets.

I know that [a,b]U[c,d] is a union and what a difference of two sets is, but I don't quite understand this question.
 
Physics news on Phys.org
Note that you're given the condition $a < b < c < d$. Thus, $[a, b]$ and $[c, d]$ are disjoint, i.e., $(b, c)$ is non-null. Consider the compactfied interval $[a, d] \supset [a, b] \cup [c, d]$. Can you "subtract" something from $[a, d]$ to produce $[a, b] \cup [c, d]$?
 
rayne said:
Let a, b, c, and d be real numbers with a < b < c < d. Express the set [a, b]U[c, d] as the difference of two sets.

I know that [a,b]U[c,d] is a union and what a difference of two sets is, but I don't quite understand this question.

Hi!

$$[a, b] \cup [c, d]=[a,d] \setminus (b,c)$$

since at the interval $[a, b] \cup [c, d]$ are included all the numbers from the interval $[a,d]$, except the ones that belong to the open interval $(b,c)$.
 
mathbalarka said:
Note that you're given the condition $a < b < c < d$. Thus, $[a, b]$ and $[c, d]$ are disjoint, i.e., $(b, c)$ is non-null. Consider the compactfied interval $[a, d] \supset [a, b] \cup [c, d]$. Can you "subtract" something from $[a, d]$ to produce $[a, b] \cup [c, d]$?

So like what evinda said, (b,c)?
 
Yes, well, evinda revealed it. It can be written as $[a, d] - (b, c)$.
 
In general, a union of bounded intervals can be expressed as the interval bounded by the inf and the sup of all the intervals, minus the "holes".

I like to think of $A - B$ as: $A$, except for the bite $B$ took out of $A$.
 
rayne said:
Let a, b, c, and d be real numbers with a < b < c < d. Express the set [a, b]U[c, d] as the difference of two sets.
And, of course, $[a, b]\cup[c, d]=([a, b]\cup[c, d])\setminus\emptyset$. Many other variants are possible. If the problem asked to represent $[a, b]\cup[c, d]$ as the difference of two segments, then I believe there is only one solution.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K