Let $f(x)=\lfloor 2x \rfloor+\lfloor 4x \rfloor+\lfloor 6x \rfloor+\lfloor 8x \rfloor$--(1).
Observe that if $n$ is a positive integer, then from (1),
$f(x+n)=f(x)+20n$--(2) follows.
In particular, this means that if an integer $k$ can be expressed in the form $f(x_0)$ for some real $x_0$, then for $n=1,\,2,\,3,\cdots$ one can express $k+20n$ similarly, i.e. $k+20n=f(x_0)+20n=f(x_0+n)$.
In view of this, one may restrict attention to determining which of the first 20 positive integers are generated by $f(x)$ as $x$ ranges through the half-open interval $(0,\,1]$.
Next, observe that as $x$ increases, the value of $f(x)$ changes only when either $2,\,4x,\,6x$ or $8x$ attains an integral value, and that the change in $f(x)$ is always to a new, higher value. In the interval $(0,\,1]$, such changes occur precisely when $x$ is of the form $\dfrac{m}{n}$, where $1\le m \le n$ and $n=2,\,4,\,6,\,8$. There are 12 such fractions, in increasing order they are:
$\dfrac{1}{8},\,\dfrac{1}{6},\,\dfrac{1}{4},\,\dfrac{1}{3},\,\dfrac{3}{8},\,\dfrac{1}{2},\,\dfrac{5}{8},\,\dfrac{2}{3},\,\dfrac{3}{4},\,\dfrac{5}{6},\,\dfrac{7}{8}$ and $1$.
Therefore, only 12 of the first 20 positive integers can be represented in the desired form. Since $1000=50(20)$, in view of (2), this implies that in each of the 50 sequences,
$1,\,2,\,3,\,\cdots,20;21,\,22,\,23,\cdots,40;\cdots ;981,\,982,\,983,\,\cdots, 1000$
of 20 consecutive integers only 12 can be so expressed, leading to a total of $50(12)$ or 600 positive integers of the desired form.