MHB Expressing zeta(3) in terms of a Glaisher-Kinkelin-like constant

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Constant Terms
Click For Summary
SUMMARY

This discussion focuses on expressing Apery's constant, denoted as $\zeta(3)$, in terms of a constant similar to the Glaisher-Kinkelin constant. The key formula derived is $$\zeta(3) = 4 \pi^{2} \log B$$, where $$\log B$$ is defined through a limit involving a summation and logarithmic terms. The discussion also utilizes the Euler-Maclaurin summation formula and the functional equation of the Riemann zeta function to establish the relationship between $\zeta(3)$ and the constant $B$. The existence of $B$ is confirmed through convergence tests for integrals.

PREREQUISITES
  • Understanding of Riemann zeta function properties
  • Familiarity with the Euler-Maclaurin summation formula
  • Knowledge of logarithmic limits and convergence tests
  • Basic calculus, particularly integration and differentiation techniques
NEXT STEPS
  • Study the Euler-Maclaurin summation formula in detail
  • Explore the properties and applications of the Riemann zeta function
  • Investigate the convergence of integrals, specifically Dirichlet's convergence test
  • Research the Glaisher-Kinkelin constant and its mathematical significance
USEFUL FOR

Mathematicians, number theorists, and researchers interested in analytic number theory and the properties of the Riemann zeta function.

polygamma
Messages
227
Reaction score
0
In a previous thread I showed how to express $\zeta'(-1)$ in terms of the Glaisher-Kinkelin constant.

http://mathhelpboards.com/challenge-questions-puzzles-28/euler-maclaurin-summation-formula-riemann-zeta-function-7702.html

This thread is about expressing $\zeta(3)$ (sometimes referred to as Apery's constant) in terms of a constant similar to the Glaisher-Kinkelin constant.

Specifically, $$\zeta(3) = 4 \pi^{2} \log B$$ where $$\log B = \lim_{n \to \infty} \left[ \sum_{k=1}^{n} k^{2} \log k - \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n + \frac{n^{3}}{9} - \frac{n}{12} \right] $$
Use the Euler-Maclaurin summation formula (or perhaps summation by parts) to show that the constant $B$ exists.Then using the representation of the Riemann zeta function derived in the other thread,

$$ \zeta(s) = \lim_{n \to \infty} \left( \sum_{k=1}^{n} k^{-s} - \frac{n^{1-s}}{1-s} - \frac{n^{-s}}{2} + \frac{s n^{-s-1}}{12} \right) \ \ \big(\text{Re}(s) > -3 \big) $$

show that

$$ \zeta'(-2) = - \log B $$Finally use the functional equation of the Riemann zeta function to show that $$ \zeta(3) = 4 \pi^{2} \log B $$
 
Last edited:
Physics news on Phys.org
Let $f(x) = x^{2} \ln x$.

Then

$$ \sum_{k=1}^{n-1} f(k) = \sum_{k=1}^{n} f(k) - n^{2} \ln n = \int_{1}^{n} f(x) \ dx + B_{1} \Big(f(n) -f(1) \Big) + \frac{B_{2}}{2!} \Big( f'(n) - f'(1) \Big) $$

$$ + \frac{1}{3!} \int_{1}^{n} B_{3} (x - \lfloor x \rfloor) f^{'''}(x) \ dx$$$$ = \frac{x^{3} \log x}{3} - \frac{x^{3}}{9} \Big|_{1}^{n} - \frac{1}{2} \Big(n^{2} \ln n -0 \Big) + \frac{1}{12} \Big(2n \ln n + n -1 \Big) + \frac{1}{6} \int_{1}^{n} B_{3} (x - \lfloor x \rfloor) \frac{2}{x} \ dx$$

$$ = \frac{n^{3} \log n}{3} - \frac{n^{3}}{9} + \frac{1}{9} - \frac{n^{2} \ln n}{2} + \frac{n \log n}{6} + \frac{n}{12}- \frac{1}{12} + \frac{1}{3} \int_{1}^{n} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$$$$ \implies \sum_{k=1}^{n} k^{2} \ln k - \Big( \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \Big) \ln n + \frac{n^{3}}{9} - \frac{n}{12} = \frac{1}{36} + \frac{1}{3} \int_{1}^{n} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$$Now take the limit of both sides of the equation.

The integral $ \displaystyle \int_{1}^{\infty} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$ converges (condtionally) by Dirichlet's convergence test for integrals.

Therefore,

$$ \log B = \lim_{n \to \infty} \left[ \sum_{k=1}^{n} k^{2} \log k - \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n + \frac{n^{3}}{9} - \frac{n}{12} \right] $$

exists.From the other thread,$$ \zeta'(s) = \lim_{n \to \infty} \Bigg[- \sum_{k=1}^{n} k^{-s} \log k - \frac{-n^{1-s} (1-s) \log n +n^{1-s}}{(1-s)^{2}} + \frac{n^{-s} \log n}{2} $$

$$ + \frac{1}{12} \left(n^{-s-1}- sn^{-s-1} \log n \right) \Bigg] \ \ (\text{Re}(s) > -3)$$Plug in $s=-2$ to get

$$ \zeta'(-2) = \lim_{n \to \infty} \Bigg[- \sum_{k=1}^{n} k^{2} \log k - \frac{-3n^{3} \log n +n^{3}}{9} + \frac{n^{2} \log n}{2} + \frac{1}{12} \left(n+2n \log n \right) \Bigg] $$

$$ = \lim_{n \to \infty} \left[ -\sum_{k=1}^{n} k^{2} \log k + \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n - \frac{n^{3}}{9} + \frac{n}{12} \right] = - \log B$$Next differentiate the functional equation of the Riemann zeta function.

$$ \zeta'(s) = \log (2) 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)+ \log(\pi) 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)$$

$$ + \frac{\pi}{2} 2^{s} \pi^{s-1} \cos \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) - 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma'(1-s) \zeta(1-s)$$

$$ -2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta'(1-s)$$At $s=-2$,

$$ \zeta'(-2) = \frac{\pi}{2} 2^{-2} \pi^{-3} \cos \left( -\pi \right) \Gamma(3) \zeta(3) = -\frac{\zeta(3)}{4 \pi^{2}}$$Which implies

$$ \zeta(3) = -4 \pi^{2}\zeta(-2) = 4 \pi^{2} \log B $$
As far as I know, the constant $B$ doesn't have a name. But it can be found in several papers.

I'm pretty sure you could express $\zeta(5)$ in terms of a similar constant. But that would require using a different representation of the Riemann zeta function.
 
As shown by this animation, the fibers of the Hopf fibration of the 3-sphere are circles (click on a point on the sphere to visualize the associated fiber). As far as I understand, they never intersect and their union is the 3-sphere itself. I'd be sure whether the circles in the animation are given by stereographic projection of the 3-sphere from a point, say the "equivalent" of the ##S^2## north-pole. Assuming the viewpoint of 3-sphere defined by its embedding in ##\mathbb C^2## as...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K