MHB Expressing zeta(3) in terms of a Glaisher-Kinkelin-like constant

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Constant Terms
Click For Summary
The discussion focuses on expressing the Riemann zeta function at three, $\zeta(3)$, in terms of a constant related to the Glaisher-Kinkelin constant. It establishes that $\zeta(3) = 4 \pi^{2} \log B$, where $\log B$ is defined through a limit involving a summation and the Euler-Maclaurin summation formula. The thread also derives that $\zeta'(-2) = -\log B$, linking it to the functional equation of the Riemann zeta function. The existence of the constant $B$ is confirmed through convergence tests, and it is suggested that similar constants could express other zeta values, like $\zeta(5)$. The exploration highlights the intricate relationships within zeta functions and their constants.
polygamma
Messages
227
Reaction score
0
In a previous thread I showed how to express $\zeta'(-1)$ in terms of the Glaisher-Kinkelin constant.

http://mathhelpboards.com/challenge-questions-puzzles-28/euler-maclaurin-summation-formula-riemann-zeta-function-7702.html

This thread is about expressing $\zeta(3)$ (sometimes referred to as Apery's constant) in terms of a constant similar to the Glaisher-Kinkelin constant.

Specifically, $$\zeta(3) = 4 \pi^{2} \log B$$ where $$\log B = \lim_{n \to \infty} \left[ \sum_{k=1}^{n} k^{2} \log k - \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n + \frac{n^{3}}{9} - \frac{n}{12} \right] $$
Use the Euler-Maclaurin summation formula (or perhaps summation by parts) to show that the constant $B$ exists.Then using the representation of the Riemann zeta function derived in the other thread,

$$ \zeta(s) = \lim_{n \to \infty} \left( \sum_{k=1}^{n} k^{-s} - \frac{n^{1-s}}{1-s} - \frac{n^{-s}}{2} + \frac{s n^{-s-1}}{12} \right) \ \ \big(\text{Re}(s) > -3 \big) $$

show that

$$ \zeta'(-2) = - \log B $$Finally use the functional equation of the Riemann zeta function to show that $$ \zeta(3) = 4 \pi^{2} \log B $$
 
Last edited:
Mathematics news on Phys.org
Let $f(x) = x^{2} \ln x$.

Then

$$ \sum_{k=1}^{n-1} f(k) = \sum_{k=1}^{n} f(k) - n^{2} \ln n = \int_{1}^{n} f(x) \ dx + B_{1} \Big(f(n) -f(1) \Big) + \frac{B_{2}}{2!} \Big( f'(n) - f'(1) \Big) $$

$$ + \frac{1}{3!} \int_{1}^{n} B_{3} (x - \lfloor x \rfloor) f^{'''}(x) \ dx$$$$ = \frac{x^{3} \log x}{3} - \frac{x^{3}}{9} \Big|_{1}^{n} - \frac{1}{2} \Big(n^{2} \ln n -0 \Big) + \frac{1}{12} \Big(2n \ln n + n -1 \Big) + \frac{1}{6} \int_{1}^{n} B_{3} (x - \lfloor x \rfloor) \frac{2}{x} \ dx$$

$$ = \frac{n^{3} \log n}{3} - \frac{n^{3}}{9} + \frac{1}{9} - \frac{n^{2} \ln n}{2} + \frac{n \log n}{6} + \frac{n}{12}- \frac{1}{12} + \frac{1}{3} \int_{1}^{n} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$$$$ \implies \sum_{k=1}^{n} k^{2} \ln k - \Big( \frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \Big) \ln n + \frac{n^{3}}{9} - \frac{n}{12} = \frac{1}{36} + \frac{1}{3} \int_{1}^{n} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$$Now take the limit of both sides of the equation.

The integral $ \displaystyle \int_{1}^{\infty} \frac{B_{3} (x - \lfloor x \rfloor)}{x} \ dx$ converges (condtionally) by Dirichlet's convergence test for integrals.

Therefore,

$$ \log B = \lim_{n \to \infty} \left[ \sum_{k=1}^{n} k^{2} \log k - \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n + \frac{n^{3}}{9} - \frac{n}{12} \right] $$

exists.From the other thread,$$ \zeta'(s) = \lim_{n \to \infty} \Bigg[- \sum_{k=1}^{n} k^{-s} \log k - \frac{-n^{1-s} (1-s) \log n +n^{1-s}}{(1-s)^{2}} + \frac{n^{-s} \log n}{2} $$

$$ + \frac{1}{12} \left(n^{-s-1}- sn^{-s-1} \log n \right) \Bigg] \ \ (\text{Re}(s) > -3)$$Plug in $s=-2$ to get

$$ \zeta'(-2) = \lim_{n \to \infty} \Bigg[- \sum_{k=1}^{n} k^{2} \log k - \frac{-3n^{3} \log n +n^{3}}{9} + \frac{n^{2} \log n}{2} + \frac{1}{12} \left(n+2n \log n \right) \Bigg] $$

$$ = \lim_{n \to \infty} \left[ -\sum_{k=1}^{n} k^{2} \log k + \left(\frac{n^{3}}{3} + \frac{n^{2}}{2} + \frac{n}{6} \right) \log n - \frac{n^{3}}{9} + \frac{n}{12} \right] = - \log B$$Next differentiate the functional equation of the Riemann zeta function.

$$ \zeta'(s) = \log (2) 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)+ \log(\pi) 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s)$$

$$ + \frac{\pi}{2} 2^{s} \pi^{s-1} \cos \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta(1-s) - 2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma'(1-s) \zeta(1-s)$$

$$ -2^{s} \pi^{s-1} \sin \left( \frac{\pi s}{2} \right) \Gamma(1-s) \zeta'(1-s)$$At $s=-2$,

$$ \zeta'(-2) = \frac{\pi}{2} 2^{-2} \pi^{-3} \cos \left( -\pi \right) \Gamma(3) \zeta(3) = -\frac{\zeta(3)}{4 \pi^{2}}$$Which implies

$$ \zeta(3) = -4 \pi^{2}\zeta(-2) = 4 \pi^{2} \log B $$
As far as I know, the constant $B$ doesn't have a name. But it can be found in several papers.

I'm pretty sure you could express $\zeta(5)$ in terms of a similar constant. But that would require using a different representation of the Riemann zeta function.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K