MHB Expression involving roots of quadratic equation

Click For Summary
To evaluate the expression $\frac{1}{\alpha^2}+\frac{1}{\beta^2}$ given the roots $\alpha$ and $\beta$ of a quadratic equation, the discussion highlights that this can be rewritten as $\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}$. The sum of the roots is expressed as $-\frac{b}{a}$ and the product as $\frac{c}{a}$. The derived expression ultimately simplifies to $\frac{b^2 - 2ac}{c^2}$. This approach effectively connects the roots of the quadratic equation to the desired expression.
mathdad
Messages
1,280
Reaction score
0
Given that $\alpha$ and $\beta$ are the roots of a quadratic equation, evaluate $\frac{1}{\alpha^2}+\frac{1}{\beta^2}$.

View attachment 7497

I find this question to be interesting.
 

Attachments

  • MathMagic171110_2.png
    MathMagic171110_2.png
    14.6 KB · Views: 109
Last edited by a moderator:
Mathematics news on Phys.org
I've edited your post to include the problem statement in the body of the post and to give it a meaningful title. Please try to do so on your own in the future. :)

RTCNTC said:
Given that $\alpha$ and $\beta$ are the roots of a quadratic equation, evaluate $\frac{1}{\alpha^2}+\frac{1}{\beta^2}$.
$$\gamma(x-\alpha)(x-\beta)=\gamma x^2-\gamma(\alpha+\beta)x+\gamma\alpha\beta$$

Using $ax^2+bx+c$, the sum of the roots is $-\frac{b}{a}$[/size] and the product of the roots is $\frac{c}{a}$[/size].

The given expression with a common denominator is $\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}$[/size].

That expression evaluates to $\frac{b^2-2ac}{c^2}$[/size].
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K