MHB Extension of Spring from Mass of 50N

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Extension Spring
Dustinsfl
Messages
2,217
Reaction score
5
A weight of \(50\) N is suspended from a spring of stiffness \(4000\) N/m and is subjected to a harmonic force of amplitude \(60\) N and frequency \(6\) Hz.

Since \(W = mg = 50\), we have that the mass, \(m = 5.10204\), and we know that \(f = \frac{\omega}{2\pi} = 6\) so \(\omega = 12\pi\). The harmonic forcing term is then
\[
F(t) = 60\cos(12\pi t)
\]
and our equation of motion is
\[
\ddot{x} + \frac{4000}{5.10204}x = \frac{60}{5.10204}\cos(12\pi t).
\]
Solving the transient and steady solution, we obtain
\[
x(t) = A\cos(28t) + B\sin(28t) - 0.0184551\cos(12\pi t)
\]
How do I determine the extension of spring from the suspended mass? This value would then be \(x(0) = x_0\). Additionally, I will assume any motion starts from rest so \(\dot{x}(0) = 0\) which leads to \(B = 0\) and \(A\) can be defined as \(x_0 - \frac{F_0}{k - m\omega^2}\) where \(\omega = 12\pi\)
\[
x(t) = (x_0 + 0.0184551)\cos(28t) - 0.0184551\cos(12\pi t)
\]
Would the extension of the spring simply be, \(F = kx\) where \(F = 50\) so
\[
x = \frac{F}{k} = \frac{1}{80}\mbox{?}
\]
 
Last edited:
Mathematics news on Phys.org
Typically [math]x_0[/math] is defined to be the origin of the motion so [math]x_0 = 0[/math]. If this is not the case then, as you correctly stated, the value of A will depend on [math]x_0[/math]. In this situation you have to define where the origin is and usually that would involve knowing the length of the spring before the mass is applied if you want to set the origin at the top or bottom of the spring. Otherwise you have to have some other related point on the spring to measure from.

-Dan
 
topsquark said:
Typically [math]x_0[/math] is defined to be the origin of the motion so [math]x_0 = 0[/math]. If this is not the case then, as you correctly stated, the value of A will depend on [math]x_0[/math]. In this situation you have to define where the origin is and usually that would involve knowing the length of the spring before the mass is applied if you want to set the origin at the top or bottom of the spring. Otherwise you have to have some other related point on the spring to measure from.

-Dan

I have already solved the problem. I should have marked it solved sooner.
 
How about copying your solution to this thread so others can use it for future reference? :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top