Extension of Spring from Mass of 50N

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Extension Spring
Click For Summary

Discussion Overview

The discussion revolves around determining the extension of a spring when a weight of 50 N is suspended from it, alongside a harmonic force. The context includes mathematical modeling and analysis of the system's motion, incorporating parameters such as spring stiffness, mass, and frequency of the applied force.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant presents the equation of motion for the system and seeks to determine the extension of the spring from the suspended mass.
  • Another participant emphasizes the importance of defining the origin of motion, suggesting that typically \(x_0\) is set to zero, which affects the calculation of the extension.
  • A participant notes that the value of \(A\) in the motion equation depends on the chosen origin, which should be based on the spring's length before the mass is applied.
  • One participant indicates they have already solved the problem and expresses a desire to mark it as solved.

Areas of Agreement / Disagreement

Participants express differing views on the definition of the origin of motion and its implications for the calculation of spring extension. There is no consensus on the specific value of \(x_0\) or how it should be defined in this context.

Contextual Notes

The discussion includes unresolved assumptions about the initial conditions and the reference point for measuring the spring's extension. The relationship between the applied force, spring constant, and resulting extension remains a point of contention.

Dustinsfl
Messages
2,217
Reaction score
5
A weight of \(50\) N is suspended from a spring of stiffness \(4000\) N/m and is subjected to a harmonic force of amplitude \(60\) N and frequency \(6\) Hz.

Since \(W = mg = 50\), we have that the mass, \(m = 5.10204\), and we know that \(f = \frac{\omega}{2\pi} = 6\) so \(\omega = 12\pi\). The harmonic forcing term is then
\[
F(t) = 60\cos(12\pi t)
\]
and our equation of motion is
\[
\ddot{x} + \frac{4000}{5.10204}x = \frac{60}{5.10204}\cos(12\pi t).
\]
Solving the transient and steady solution, we obtain
\[
x(t) = A\cos(28t) + B\sin(28t) - 0.0184551\cos(12\pi t)
\]
How do I determine the extension of spring from the suspended mass? This value would then be \(x(0) = x_0\). Additionally, I will assume any motion starts from rest so \(\dot{x}(0) = 0\) which leads to \(B = 0\) and \(A\) can be defined as \(x_0 - \frac{F_0}{k - m\omega^2}\) where \(\omega = 12\pi\)
\[
x(t) = (x_0 + 0.0184551)\cos(28t) - 0.0184551\cos(12\pi t)
\]
Would the extension of the spring simply be, \(F = kx\) where \(F = 50\) so
\[
x = \frac{F}{k} = \frac{1}{80}\mbox{?}
\]
 
Last edited:
Physics news on Phys.org
Typically [math]x_0[/math] is defined to be the origin of the motion so [math]x_0 = 0[/math]. If this is not the case then, as you correctly stated, the value of A will depend on [math]x_0[/math]. In this situation you have to define where the origin is and usually that would involve knowing the length of the spring before the mass is applied if you want to set the origin at the top or bottom of the spring. Otherwise you have to have some other related point on the spring to measure from.

-Dan
 
topsquark said:
Typically [math]x_0[/math] is defined to be the origin of the motion so [math]x_0 = 0[/math]. If this is not the case then, as you correctly stated, the value of A will depend on [math]x_0[/math]. In this situation you have to define where the origin is and usually that would involve knowing the length of the spring before the mass is applied if you want to set the origin at the top or bottom of the spring. Otherwise you have to have some other related point on the spring to measure from.

-Dan

I have already solved the problem. I should have marked it solved sooner.
 
How about copying your solution to this thread so others can use it for future reference? :)
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
28
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K